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Abstract. For a given real triangle T its discretization on a discrete
point set S consists of points from S which fall into T . If the number
of such points is finite, the obtained discretization of T will be called
discrete triangle.
In this paper we show that the discrete moments having the order up
to 3 characterize uniquely the corresponding discrete triangle if the dis-
cretizationing set S is fixed.
Of a particular interest is the case when S is the integer grid, i.e.,
S = Z2. Then the discretization of a triangle T is called digital triangle.
It turns out that the proposed characterization preserves a coding of
digital triangles from an integer grid of a given size, say m ×m within
an O(logm) amount of memory space per coded digital triangle. That
is the theoretical minimum.

Keywords. Digital triangle, digital shape, coding, moments.

1 Introduction

The basic motivation for this paper was recovering a simple and efficient char-
acterization of digital triangles. By digital triangles we mean digital (binary)
pictures of real triangles, or more formally, a digital triangle D(T ) is the set
consisting of integer points which fall into a real triangle T :

D(T ) = {(i, j) | (i, j) ∈ T, i, j are integers} = {(i, j) | (i, j) ∈ T ∩ Z2} .

That is the most usual digitization scheme for planar regions.
But, sometimes the digitization (i.e., discretization) is made by using another

“discretizationing” set than it is Z2. Some other examples of discrete presen-
tation of real objects are: Discrete images on the hexagonal grid, radar images,
images made on statistically distributed set of points, e.t.c. Because the method
presented here can be applied to discretizations on different sets we start with
� The author is also with the Mathematical institute of Serbian Academy of Sciences,
Belgrade.
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Fig. 1. A discretization of the triangle ABC consisting of 20 points is shown above.

a general definition of a discrete triangle D(T ) from a fixed discrete point set
S (see Fig. 1). Thus, we define

D(T ) = {(x, y) | (x, y) ∈ T ∩ S} .
Through the paper, it will be assumed but not mentioned, all discrete triangles
consist of a finite number of points. For an illustration, the discretizations on
the set consisting of all points with the coordinates which are rational numbers
(i.e., S = Q2 ) are not considered. It is not convenient to use a real triangle to
represent its discretization. In that case any discrete triangle can be represented
by infinitely many real triangles, since there is a continuum of real triangles which
have the same discretization on a given set of points. Depending on S, it can be
difficult to answer which different real triangles have different discretizations. By
the way, if we have a binary picture of a triangular objects, the “original triangle”
is usually unknown. Consequently, the characterization of discrete triangles by a
real triangle with a given discretization requires a procedure for reconstruction
of an original triangle from its discretization.

In the next section we give a characterization of discrete triangles which
is simple and fast for any choice of the discretizationing set S. For such a
characterization we will use, so called, discrete moments. Precisely, the discrete
moment µp,q(X) of a finite set X is defined as:

µp,q(X) =
∑

(x,y)∈X
xp · yq .

The moment µp,q(X) has the order p+ q.
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We prove that ten discrete moments having the order up to 3 are enough for
a unique characterization of discrete triangles discretized on a fixed discrete set.
In Section 3 we give some performance analysis of the proposed characterization
if the discretization is made on a squared integer grid of a given size, i.e., on
Z2 ∩ [0,m− 1]2, for some integer m. Z2 ∩ [0,m− 1]2, will be called the m×m
integer grid. It turns out again that the use of moments is a powerful tool in
image analysis ([3], [8]). Section 4 contains concluding remarks.

Through the paper a finite set means that the set consists of a finite number
of points. Also, a unique characterization and coding will have the same meaning.

We shall say that a function f(x, y) separates sets S1 and S2 if f(x, y)
has the different sign in the points of S1 and S2. For example, (x, y) ∈ S1
implies f(x, y) > 0, while (x, y) ∈ S2 implies f(x, y) < 0.

2 Characterization of Discrete Triangles

In this section it will be shown that the discrete moments having order up to 3
match uniquely the discrete triangles presented on a fixed set S. We start with
the following theorem.

Theorem 1. Let S1 and S2 be two finite planar sets. If there exists a function
of the form

f(x, y) =
∑
p+q≤k

αp,q · xp · yq, (1)

where p, q ∈ {0, 1, . . . , k} and αp,q are arbitrary real numbers, such that
f(x, y) separates S1 \ S2 and S2 \ S1 then

µp,q(S1) = µp,q(S2) for all non negative integers p, q, with p+ q ≤ k,

is equivalent to S1 = S2 .

Proof. If S1 = S2 then the corresponding discrete moments are equal obviously.
What we have to prove is: The equalities of the corresponded moments of the
order up to k preserve S1 = S2. We prove that by a contradiction. Let

∑
(x,y)∈S1

xp · yq = µp,q(S1) = µp,q(S2) =
∑

(x,y)∈S2

xp · yq

holds for all non negative integers p and q satisfying p + q ≤ k, and for
some different finite sets S1 and S2. Since S1 �= S2 we can assume S1 \ S2 is
non empty, else we can start with the non empty S2 \S1. Further, because there
exists a function f(x, y) of the form (1)

f(x, y) =
∑
p+q≤k

αp,q · xp · yq,
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which separates S1 \ S2 and S2 \ S1. Let be f(x, y) > 0 for (x, y) ∈ S1 \ S2,
while (x, y) ∈ S2 \ S1 implies f(x, y) < 0. Then

0 <
∑

(x,y)∈S1\S2

f(x, y) =
∑

(x,y)∈S1\S2


 ∑
p+q≤k

αp,q · xp · yq



=
∑
p+q≤k


 ∑
(x,y)∈S1\S2

αp,q · xp · yq

+

∑
p+q≤k


 ∑
(x,y)∈S1∩S2

αp,q · xp · yq



−
∑
p+q≤k


 ∑
(x,y)∈S1∩S2

αp,q · xp · yq



=
∑
p+q≤k


αp,q ·

∑
(x,y)∈S1

xp · yq

−

∑
p+q≤k


αp,q ·

∑
(x,y)∈S1∩S2

xp · yq



=
∑
p+q≤k


αp,q ·

∑
(x,y)∈S2

xp · yq

 −

∑
p+q≤k


αp,q ·

∑
(x,y)∈S1∩S2

xp · yq



=
∑

(x,y)∈S2\S1


 ∑
p+q≤k

αp,q · xp · yq

 =

∑
(x,y)∈S2\S1

f(x, y) ≤ 0.

The contradiction 0 < 0 finishes the proof. []

Now, we can prove the main result of the paper.

Theorem 2. Let a discrete point set S be given. Then, any discrete triangle
D(T ) from S is uniquely determined by ten discrete moments

µp,q(D(T )), where p+ q ≤ 3, and p, q are non negative integers.

Proof. We will use the previous theorem specifying that k = 3 and S1 and S2
are discrete triangles D(T ) and D(T1).

If we consider T and T1 as planar compact regions then the set intersection
T∩T1 is either the empty set or the convex region whose boundary is the polygon
having 6 vertices at most. In the case of T ∩ T1 = ∅ the proof is trivial because
there always exists a straight line which separates T and T1 and consequently
the same line separates D(T ) \D(T1) and D(T1) \D(T ). If the mentioned line
is defined by α · x+ β · y + γ = 0 then (due to Theorem 1) the proof follows by
setting f(x, y) = α · x+ β · y + γ.

If T ∩ T1 �= ∅ then it is easily to conclude that all possible situations are
characterized by Figures 2-9. Namely, if we consider the number of edges (i.e.,
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the number of vertices) of T ∩ T1 and mutual order between edges which
belong to the boundary of T and those which belong to the boundary of T1 we
distinguish the following cases:

i) if T ∩ T1 has 6 vertices, the situation corresponds to Figures 2 and 3;
ii) if T∩T1 has 5 vertices we recognize two possibilities corresponded to Figures

4 and 5;
iii) if T ∩ T1 has 4 vertices, we recognize three essentially different situations

corresponded to Figures 6, 7, and 8;
iv) if T ∩T1 has 3 vertices we have one nontrivial situation presented on Fig. 9.

At all Figures 2-9, the triangle T with vertices A, B, and C is fixed,
while the triangle T1 varies. Triangle T1 is drown by dashed lines.

The statement follows due to Theorem 1, since the existence of a function
of the form (1) which separates the set differences of any two different discrete
triangles D(T ) and D(T1) is shown in all possible situations.

For a straight line l, let αl · x + βl · y − γl = 0 be an equation
which defines l. In the capture of any figure, a function f(x, y) which separates
D(T ) \D(T1) and D(T1) \D(T ) is described by suitable chosen lines and the
product of their equations.
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Fig. 2. f(x, y) = (αu · x+ βu · y− γu) · (αv · x+ βv · y− γv) · (αw · x+ βw · y− γw) is a
separating function for D(T ) \D(T1) (points labeled by a), and D(T1) \D(T ) (points
labeled by b).
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Fig. 3. f(x, y) = (αu · x+ βu · y− γu) · (αv · x+ βv · y− γv) is a separating function for
D(T ) \D(T1) (points labeled by a), and D(T1) \D(T ) (points labeled by b).
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Fig. 4. f(x, y) = (αu · x+ βu · y− γu) · (αv · x+ βv · y− γv) is a separating function for
D(T ) \D(T1) (points labeled by a), and D(T1) \D(T ) (points labeled by b).
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Fig. 5. f(x, y) = αu · x+ βu · y − γu is a separating function for D(T ) \D(T1) (points
labeled by a), and D(T1) \D(T ) (points labeled by b) .
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Fig. 6. f(x, y) = (αu · x+ βu · y− γu) · (αv · x+ βv · y− γv) is a separating function for
D(T ) \D(T1) (points labeled by a), and D(T1) \D(T ) (points labeled by b) .
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Fig. 7. f(x, y) = αu · x+ βu · y − γu is a separating function for D(T ) \D(T1) (points
labeled by a), and D(T1) \D(T ) (points labeled by b) .
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Fig. 8. f(x, y) = αu · x+ βu · y − γu is a separating function for D(T ) \D(T1) (points
labeled by a), and D(T1) \D(T ) (points labeled by b) .
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Fig. 9. f(x, y) = αu · x+ βu · y − γu is a separating function for D(T ) \D(T1) (points
labeled by a), and D(T1) \D(T ) (points labeled by b). []

3 On Digital Triangles

As it is mentioned, we use a digital triangle instead of a discrete triangle if the
discretization is made on the integer grid, i.e., S = Z2. In this section we
analyze the storage complexity if the proposed characterization (coding scheme)
is applied. We have the following theorem.

Theorem 3. Any digital triangle presented on the m×m integer grid can be
coded by

O(logm)

bits. That is the asymptotic minimum.

Proof. The proof follows from the simple fact µp,q(D(T )) ≤ (m − 1)5, which
implies that less than 10 · log(m − 1)5 = O(logm) bits are enough for the
storage of the discrete moments µp,q(D(T )) under the assumptions: p+ q ≤ 3
and D(T ) is a digital triangle from the (m×m)-integer grid.

On the other side, since any of m2 pixels can be a discretization of a real
triangle with a sufficiently small area, it follows that O(logm) bits per coded
digital triangle is a lower bound for the storage complexity. []

Remark. An equivalent formulation of the previous theorem is: If a real
triangle is presented on a digital picture of a given resolution r (i.e., there are r
pixels per unit) then O(log r) bits are sufficient for the storage.
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Fig. 10. Digitalization of the triangle T having the vertices (π3 , ln 3), (4, 3), and
(
√
30, 3

2 ) by applying the resolutions r=1 and r = 2. The “new” points appearing
in D(T ) after the increase of resolution are denoted by +.

Of course, this is much better than storage of all ≈ area of(T ) · r2 =
O(r2) pixels belonging to D(T ), but also, it is better than the storage by
using the Freeman 8-chain code. Namely, it is straightforward that O(r) bits
are necessary for the storage of D(T ) by the Freeman code of the “digital”
boundary of D(T ). A few examples given in Table 1, confirm that. From the
table, it can be seen that for a relatively small resolution r = 1, i.e., one pixel
is the measure unit (see Figure 10), the proposed code requires 76 bits (since
19 characters from the set {0, 1, 2, . . . 9} should be stored) while 18 bits (for the
storage of 6 characters from {0, 1, 2, . . . , 7}) are sufficient for Freeman coding
(i.e., 8-chain coding). The situation is changing if the resolution increase. For
example, if r = 100, i.e., there are 100 pixels per measure unit, the proposed
code (99 characters from {0, 1, 2, . . . 9}) requires 396 bits while the Freeman code
consisting of 884 characters from {0, 1, 2, . . . 7} requires 2652 bits. If r = 500 the
amounts of bits are are 504 and 13284, for r = 1000, they are 556 and 35432,
respectively. Of course, the dominance of the new code is more obvious for higher
values of r and in the limit case it is in accordance with the previous asymptotic
estimates.

4 Concluding Remarks

In this paper an efficient characterization of digital triangles is given. The de-
scribed characterization is simple and asymptotically optimal with respect to the
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Table 1. The triangle T with vertices (
π

3
, ln 3), (4, 3), and (

√
30,

3
2
) is

presented on digital pictures having different resolutions. The code of D(T ) presented
here and the size of the Freeman code of the boundary of D(T ) are given.

applied the proposed code Freeman
resolu- µ0,0, µ1,0, µ0,1, µ2,0, µ1,1, µ0,2, code
tion r µ3,0, µ2,1, µ1,2, µ0,3 length

1 3, 11, 7, 41, 26, 17
155, 98, 64, 43 6

2 15, 107, 57, 803, 410, 229
6281, 3082, 1664, 975 14

5 87, 1507, 815, 27807, 14435, 8013
538081, 269513, 144561, 82559 42

3 · e 241, 6906, 3688, 210812, 107977, 59234
6751896, 3334301, 1766307, 996778 70

10 356, 12480, 6640, 466850, 237545, 129750
18352200, 8976191, 4721145, 2652358 86

25 2257, 197697, 105150, 18513157, 9412325, 5133818
1822886751, 891082875, 467844501, 262200330 218

√
1000 3620, 401408, 213717, 47566142, 24222891, 13226957

5924570114, 2902540215, 1526584563, 856530219 278

100 36185, 12693880, 6752390, 4759918368, 2420790884, 1320567596
1876452768418, 917747474042, 482006394242, 270164847422 884

used memory space. The method can be applied to discretization of triangles on
different “discretizationing” sets, as well. The corresponding discrete moments
having order at most 3 are sufficient for a unique determination of the given
discrete triangle.

Let us mention that the problem of efficient representation is already studied
for digital straight line segments ([1], [7]), digitized circular arcs ([11]), digital
ellipses ([13]), and digital polynomial segments ([12]). So, by the coding scheme
proposed here a fast comparison of digital triangles and an efficient storage of
them are preserved. The recognition and reconstruction problems are not studied
here.

For digital n-gons the recognition problem is considered in the literature
but only for digital squares ([2], [9]). The problem of optimal coding of digital
polygons for an arbitrary n seems to be difficult one even in the case of digital
convex polygons. Namely, is it known ([4]) that any optimal coding is within
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O(m2/3) bits per coded digital convex polygon from the m ×m−integer grid
but such a coding scheme is still unknown.

The problem of a fast computation of the discrete moments for digital trian-
gles is omitted from the paper because a number of papers were already devoted
to developing fast algorithms of moment computation for 2D objects ([5], [6]).
Also, a general approach for moment calculation for polygons and line segments
is given in [10].
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