Skip to main content

Designing Specific Oligonucleotide Probes for the Entire S. cerevisiae Transcriptome

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2452))

Included in the following conference series:

Abstract

Probe specificity plays a central role in designing accurate microarray hybridization assays. Current literature on specific probe design studies algorithmic approaches and their relationship with hybridization thermodynamics. In this work we address probe specificity properties under a stochastic model assumption and compare the results to actual behavior in genomic data.We develop effcient specificity search algorithms. Our methods incorporate existing transcript expression level data and handle a variety of cross-hybridization models. We analyze the performance of our methods. Applying our algorithm to the entire S. cerevisiae transcriptome we provide probe specificity maps for all yeast ORFs that may be used as the basis for selection of sensitive probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.P. Blanchard, and L. Hood, Sequence to array: Probing the Genome’s Secrets, Nature Biotechnology 14:1649, 1996.

    Article  Google Scholar 

  2. Y. Lysov, A. Chernyi, A. Balaev, F. Gnuchev, K. Beattie, and A. Mirzabekov, DNA Sequencing by Contiguous Stacking Hybridization on Modified Oligonucleotide Matrices, Molecular Biology 29(1):62–66, 1995.

    Google Scholar 

  3. E.S. Lander, Array of Hope, Nature Genetics 21:3–4, 1999.

    Article  Google Scholar 

  4. P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, Comprehensive Identification of Cell Cycleregulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization, Molecular Biology of the Cell 9(12):3273–97, 1998.

    Google Scholar 

  5. M. Bittner et al, Molecular Classification of Cutaneous Malignant Melanoma by Gene Expression Profiling, Nature, 406(6795):536–40, 2000.

    Article  Google Scholar 

  6. T. R. Golub et al, Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, 286(5439):531–7, 1999.

    Article  Google Scholar 

  7. M. Mitsuhashi, A. Cooper, M. Ogura, T. Shinagawa, K. Yano and T. Hosokawa, Oligonucleotide Probe Design-a New Approach, Nature 367:759–761, 1994.

    Article  Google Scholar 

  8. F. Li, G.D. Stormo, Selection of Optimal DNA Oligos for Gene Expression Arrays, Bioinformatics 17(11):1067–1076, 2001.

    Article  Google Scholar 

  9. N. Hosaka N, K. Kurata, H. Nakamura, Comparison of Methods for Probe Design, Genome Informatics 12: 449–450, 2001.

    Google Scholar 

  10. A.D. Barbour, L. Holst, and S. Janson, Poisson Approximation, Clarendon Press, Oxford, 1992.

    MATH  Google Scholar 

  11. C. Stein, Approximate Computation of Expectations, Institute of Mathematical Statistics Monograph Series, Vol. 7, 1996.

    Google Scholar 

  12. M. Morris, G. Schachtel, and S. Karlin, Exact Formulas for Multitype Run Statistics in a Random Ordering, SIAM J. Disc. Math., 6(1):70–86, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  13. A.M. Mood, The Distribution Theory of Runs, Ann. Math. Stat. 11:367–392, 1940.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Southern, K. Mir, and M. Shchepinov, Molecular Interactions on Microarrays, Nature Genetics, 21(1):5–9, 1999.

    Article  Google Scholar 

  15. T. Strachan and A.P. Read, Human MolecularGenetics, John Wiley & Sons, New York, 1997.

    Google Scholar 

  16. J. SantaLucia, A unified view of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-neighbor Thermodynamics, PNAS USA 95, 1460–1465, 1998.

    Google Scholar 

  17. Cherry, J. M., Ball, C., Dolinski, K., Dwight, S., Harris, M., Matese, J. C., Sherlock, G., Binkley, G., Jin, H., Weng, S., and Botstein, D., Saccharomyces Genome Database, ftp://genome-ftp.stanford.edu/pub/yeast/SacchDB/

  18. F.C.P. Holstege, E.G. Jennings, J.J. Wyrick, T.I. Lee, C.J. Hengartner, M.R. Green, T.R. Golub, E.S. Lander, and R.A. Young, Dissecting the Regulatory Circuitry of a Eukaryotic Genome, Cell, 95:717–728, 1998. http://web.wi.mit.edu/young/expression/transcriptome.html

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lipson, D., Webb, P., Yakhini, Z. (2002). Designing Specific Oligonucleotide Probes for the Entire S. cerevisiae Transcriptome. In: Guigó, R., Gusfield, D. (eds) Algorithms in Bioinformatics. WABI 2002. Lecture Notes in Computer Science, vol 2452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45784-4_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45784-4_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44211-0

  • Online ISBN: 978-3-540-45784-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics