Skip to main content

Cooperation between Local and Global Approaches to Register Brain Images

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2082))

Abstract

In this paper, we investigate the introduction of cortical constraints for non rigid inter-subject brain registration. We extract sulcal patterns with the active ribbon method, presented in [10]. An energy based registration method [7] makes it possible to incorporate the matching of cortical sulci, and express in a unified framework the local sparse similarity and the global “iconic” similarity. We show the objective benefits of cortical constraints on a database of 18 subjects, with global and local measures of the quality of the registration.

Acknowledgements

This work has been partly supported by the Brittany Country Council under a contribution to the student grant. Grant support for the acquisition of the data was provided by the GIS Project “cognition science”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Caunce and CJ. Taylor. Using local geometry to build 3D sulcal models. Proc. IPMI, pages 196–209, 1999.

    Google Scholar 

  2. H. Chui, J. Rambo, J. Duncan, R. Schultz, and A. Rangarajan. Registration of cortical anatomical structures via robust 3D point matching. Proc. IPMI, pages 168–181, 1999.

    Google Scholar 

  3. L. Collins, G. Le Goualher, and A. Evans. Non linear cerebral registration with sulcal constraints. Proc. of MICCAI, pages 974–985. Springer, October 1998.

    Google Scholar 

  4. L. Collins, G. Le Goualher, R. Venugopal, A. Caramanos, A. Evans, and C. Barillot. Cortical constraints for non-linear cortical registration. Proc. VBC, pages 307–316, September 1996.

    Google Scholar 

  5. T. Cootes, C. Taylor, D. Hooper, and J. Graham. Active shape models-their training and application. CVIU, 61(1):31–59, 1995.

    Google Scholar 

  6. J. Gee, L. Le Briquer, C. Barillot, and D. Haynor. Probabilistic matching of brain images. In Bizais et al., editor, Proc. Information Processing in Medical Imaging, Brest, June 1995. Kluwer academic publisher.

    Google Scholar 

  7. P. Hellier, C. Barillot, E. Mmin, and P. Prez. An energy-based framework for dense 3d registration of volumetric brain image. In IEEE CVPR, pages 270–275, Jun 2000.

    Google Scholar 

  8. B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203, 1981.

    Article  Google Scholar 

  9. F. Lachmann and C. Barillot. Brain tissue classification from mri data by means of texture analysis. In SPIE Press, editor, Spie Medical Imaging, pages 72–83, 1992.

    Google Scholar 

  10. G. Le Goualher, C. Barillot, and Y. Bizais. Modeling cortical sulci with active ribbons. IJPRAI, 8(11):1295–1315, 1997.

    Google Scholar 

  11. G. Le Goualher, E. Procyk, L. Collins, R. Venegopal, C. Barillot, and A. EvansG. Automated extraction and variability analysis of sulcal neuroanatomy. In IEEE TMI, 18(3):206–217, Mars 1999.

    Google Scholar 

  12. J. Maintz, MA. Viergever.-A survey of medical image registration. Medical Image Analysis, 2(1):1–36, 1998.

    Article  Google Scholar 

  13. J.-F. Mangin, V. Frouin, I. Bloch, J. Regis, and J. Lpez-Krahe. From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Math. Ima. and Vis., 5(4):297–318, 1995.

    Article  Google Scholar 

  14. J. Mazziotta, A. Toga, A. Evans, P. Fox, and J. Lancaster. A probabilistic atlas of the human brain: theory and rationale for its development. Neuroimage, 2:89–101, 1995.

    Article  Google Scholar 

  15. M. Nagao and M. Matsuyama. Edge preserving smoothing. CVGIP, 9:394–407, 1979.

    Google Scholar 

  16. M. Ono, S. Kubik, C. Abernathey.-Atlas of the cerebral sulci.-Verlag, 1990.

    Google Scholar 

  17. D. Riviere, JF. Mangin, D. Papadopoulos-Orfanos, J. Martinez, V. Frouin, and J. Regis. Automatic recognition of cerebral sulci using a congregation of neural networks. In Proc. of MICCAI, 2000.

    Google Scholar 

  18. N. Royackkers, H. Fawal, M. Desvignes, M. Revenu, and JM. Travere. Morphometry and identification of brain sulci on three-dimensional MR images. Proc. IPMI, pages 379–380, June 1995.

    Google Scholar 

  19. S. Sandor and R. Leahy. Surface-based labeling of cortical anatomy using a deformable atlas. IEEE TMI, 16(1):41–54, 1997.

    Google Scholar 

  20. G. Szekely, Ch. Brechbhler, O. Kbler, R. Ogniewicz, and T. Budinger. Mapping the human cerebral cortex using 3d medial manifolds. In VBC, pages 130–144, 1992. SPIE.

    Google Scholar 

  21. J. Talairach and P. Tournoux. Referentially oriented cerebral MRI anatomy. Georg Thieme Verlag, New-York, 1993.

    Google Scholar 

  22. J.P. Thirion and A. Gourdon. The marching lines algorithm: new result and proofs. Research report 1881, INRIA, March 1993.

    Google Scholar 

  23. P. Thompson and A. Toga. A surface-based technique for warping threedimensional images of the brain. IEEE TMI, 15(4):402–417, 1996.

    Google Scholar 

  24. M. Vaillant and C. Davatzikos. Hierarchical matching of cortical features for deformable brain image registration. Proc. IPMI, pages 182–195, June 1999.

    Google Scholar 

  25. X. Zeng, L.H. Staib, R.T. Schultz, H. Tagare, L. Win, and J.S. Duncan. A new approach to 3D sulcal ribbon finding from MR images. MICCAI, pages 148–157, September 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hellier, P., Barillot, C. (2001). Cooperation between Local and Global Approaches to Register Brain Images. In: Insana, M.F., Leahy, R.M. (eds) Information Processing in Medical Imaging. IPMI 2001. Lecture Notes in Computer Science, vol 2082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45729-1_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-45729-1_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42245-7

  • Online ISBN: 978-3-540-45729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics