Skip to main content

Part of the book series: Les Houches - Ecole d’Ete de Physique Theorique ((LHSUMMER,volume 75))

Abstract

We all are fascinated by the phenomena of intelligent behavior, as generated both by our own brains and by the brains of other animals. As physicists we would like to understand if there are some general principles that govern the structure and dynamics of the neural circuits that underlie these phenomena. At the molecular level there is an extraordinary universality, but these mechanisms are surprisingly complex. This raises the question of how the brain selects from these diverse mechanisms and adapts to compute “the right thing” in each context. One approach is to ask what problems the brain really solves. There are several examples—from the ability of the visual system to count photons on a dark night to our gestalt recognition of statistical tendencies toward symmetry in random patterns—where the performance of the system in fact approaches some fundamental physical or statistical limits. This suggests that some sort of optimization principles may be at work, and there are examples where these principles have been formulated clearly and generated predictions which are confirmed in new experiments; a central theme in this work is the matching of the coding and computational strategies of the brain to the statistical structure of the world around us. Extension of these principles to the problem of learning leads us into interesting theoretical questions about how to measure the complexity of the data from which we learn and the complexity of the models that we use in learning, as well as opening some new opportunities for experiment. This combination of theoretical and experimental work gives us some new (if still speculative) perspectives on classical problems and controversies in cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.B. Barlow, Nature 304 (1983) 207–209.

    Article  ADS  Google Scholar 

  2. H.B. Barlow, Proc. R. Soc. Lond. Ser. B 212 (1981) 1–34.

    Article  ADS  Google Scholar 

  3. W. Bialek, Ann. Rev. Biophys. Biophys. Chem. 16 (1987) 455–478.

    Article  Google Scholar 

  4. W. Bialek, Optimal signal processing in the nervous system, in Princeton Lectures on Biophysics, edited by W. Bialek (World Scientific, Singapore, 1992) pp. 321–401.

    Google Scholar 

  5. F. Rieke, D. Warland, R. de Ruyter van Steveninck and W. Bialek, Spikes: Exploring the Neural Code (MIT Press, Cambridge, 1997).

    Google Scholar 

  6. M. Bouman, in Sensory Communication, edited by W. Rosenblith (MIT Press, Cambridge, 1960).

    Google Scholar 

  7. F. Rieke and D.A. Baylor, Revs. Mod. Phys. 70 (1998) 1027–1036.

    Article  ADS  Google Scholar 

  8. S. Hecht, S. Shlaer and M.H. Pirenne, J. Gen. Physiol. 25 (1942) 819–840.

    Article  Google Scholar 

  9. H.A. van der Velden, Physica 11 (1944) 179–189.

    Article  ADS  Google Scholar 

  10. D.A. Baylor, T.D. Lamb and K.-W. Yau, J. Physiol. (Lond.) 288 (1979) 613–634.

    Google Scholar 

  11. D.A. Baylor, B. J. Nunn and J.F. Schnapf, Macaca fascicularis, J. Physiol. (Lond.) 357 (1984) 575–607.

    Google Scholar 

  12. H.B. Barlow, J. Opt. Soc. Am. 46 (1956) 634–639.

    Article  ADS  Google Scholar 

  13. D.M. Green and J.A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

  14. M.C. Teich, P.R. Prucnal, G. Vannucci, M.E. Breton and W.J. McGill, Biol. Cybern. 44 (1982) 157–165.

    Article  Google Scholar 

  15. D.A. Baylor, G. Matthews and K.-W. Yau, J. Physiol. (Lond.) 309 (1980) 591–621.

    Google Scholar 

  16. A.-C. Aho, K. Donner, C. Hydén, L.O. Larsen and T. Reuter, Nature 334 (1988) 348–350.

    Article  ADS  Google Scholar 

  17. A.G. Doukas, M.R. Junnarkar, R.R. Alfano, R.H. Callender, T. Kakitani and B. Honig, Proc. Nat. Acad. Sci. (USA) 81 (1984) 4790–4794.

    Article  ADS  Google Scholar 

  18. R.W. Schoenlein, L.A. Peteanu, R.A. Mathies and C.V. Shank, Science 254 (1991) 412–415.

    Article  ADS  Google Scholar 

  19. Q. Wang, R.W. Schoenlein, L.A. Peteanu, R.A. Mathies and C.V. Shank, Science 266 (1994) 422–424.

    Article  ADS  Google Scholar 

  20. W. Bialek, R.F. Goldstein and A. Kivelson, Simple models for the dynamics of biomolecules: How far can we go?, in Structure, Dynamics and Function of Biomolecules: The First EBSA Workshop, edited by A. Ehrenberg, R. Rigler, A. Graslund and L.J. Nilsson (Springer-Verlag, Berlin, 1987), pp. 65–69.

    Google Scholar 

  21. F.L.J. Vos, D.P. Aalberts and W. van Saarloos, Phys. Rev. B 53 (1996) 14922–14928.

    Article  ADS  Google Scholar 

  22. D.P. Aalberts, M.S.L. du Croo de Jongh, B.F. Gerke and W. van Saarloos, Phys. Rev. A 61 (2000) 040701.

    Article  ADS  Google Scholar 

  23. M.H. Vos, J.-C. Lambry, S.J. Robles, D.C. Youvan, J. Breton and J.-L. Martin, Proc. Nat. Acad. Sci. (USA) 88 (1991) 8885–8889.

    Article  ADS  Google Scholar 

  24. M.H. Vos, M.R. Jones, C.N. Hunter, J. Breton and J.-L. Martin, Proc. Nat. Acad. Sci. (USA) 91 (1994) 12701–12705.

    Article  ADS  Google Scholar 

  25. A.-C. Aho, K. Donner, S. Helenius, L.O. Larsen and T. Reuter, J. Comp. Physiol. A 172 (1993) 671–682.

    Article  Google Scholar 

  26. F. Rieke and D.A. Baylor, Biophys. J. 75 (1998) 1836–1857.

    Article  ADS  Google Scholar 

  27. P.B. Detwiler, S. Ramanathan, A. Sengupta and B.I. Shraiman, Biophys. J. 79 (2000) 2801–2817.

    Article  Google Scholar 

  28. F. Rieke and D.A. Baylor, Biophys. J. 71 (1996) 2553–2572.

    Article  ADS  Google Scholar 

  29. H.B. Barlow, W. Levick and M. Yoon, Vision Res. Suppl. 3 (1971) 87–101.

    Article  Google Scholar 

  30. A.B. Valbo, Single afferent neurons and somatic sensation in humans, in The Cognitive Neurosciences, edited by M. Gazzaniga (MIT Press, Cambridge, 1995), pp. 237–252.

    Google Scholar 

  31. J.A. Simmons, M. Ferragamo, C.F. Moss, S.B. Stevenson and R.A. Altes, J. Comp. Physiol. A 167 (1990) 589–616.

    Article  Google Scholar 

  32. H.B. Barlow, Philos. Trans. R. Soc. Lond. Ser. B 290 (1980) 71–82.

    Article  ADS  Google Scholar 

  33. H. Barlow and S.P. Tripathy, J. Neurosci. 17 (1997) 7954–7966.

    Google Scholar 

  34. W.T. Newsome, M.N. Shadlen, E. Zohary, K.H. Britten and J.A. Movshon, Visual motion: Linking neuronal activity to psychophysical performance, in The Cognitive Neurosciences, edited by M. Gazzaniga (MIT Press, Cambridge, 1995), pp. 401–414.

    Google Scholar 

  35. N. Strausfeld, Atlas of an Insect Brain (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  36. http://flybrain.neurobio.arizona.edu/Flybrain/html/

  37. D.G. Stavenga and R.C. Hardie, Facets of Vision (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  38. M.F. Land and T.S. Collett, J. Comp. Physiol. 89 (1974) 331–357.

    Article  Google Scholar 

  39. H. Wagner, Phil. Trans. R. Soc.Ser. B 312 (1986) 527–595.

    Article  ADS  Google Scholar 

  40. C. Schilstra and J.H. van Hateren, J. Exp. Biol. 202 (1999) 1481–1490.

    Google Scholar 

  41. J.H. van Hateren and C. Schilstra, J. Exp. Biol. 202 (1999) 1491–1500.

    Google Scholar 

  42. W. Reichardt and T. Poggio, Q. Rev. Biophys. 9 (1976) 311–375.

    Article  Google Scholar 

  43. R.R. de Ruyter van Steveninck and S.B. Laughlin, Nature 379 (1996) 642–645.

    Article  ADS  Google Scholar 

  44. K. Hausen, The lobular complex of the fly: structure, function, and significance in behavior, in Photoreception and vision in invertebrates, edited by M. Ali (Plenum, New York, 1984), pp. 523–559.

    Google Scholar 

  45. K. Hausen and M. Egelhaaf, Neural mechanisms of visual course control in insects, in [37], (1989) pp. 391–424.

    Google Scholar 

  46. K. Hausen and C. Wehrhahn, Proc. R. Soc. Lond. B 21 (1983) 211–216.

    Article  ADS  Google Scholar 

  47. W. Bialek, F. Rieke, R.R. de Ruyter van Steveninck and D. Warland, Science 252 (1991) 1854–1857.

    Article  ADS  Google Scholar 

  48. W. Bialek, Theoretical physics meets experimental neurobiology, in 1989 Lectures in Complex Systems, SFI Studies in the Sciences of Complexity, Lect. Vol. II, edited by E. Jen (Addison-Wesley, Menlo Park CA, 1990), pp. 513–595.

    Google Scholar 

  49. R.R. de Ruyter van Steveninck and W. Bialek, Phil. Trans. R. Soc. Lond. 348 (1995) 321–340.

    Article  Google Scholar 

  50. R. de Ruyter van Steveninck and W. Bialek, Proc. R. Soc. London Ser. B 234 (1988) 379–414.

    Article  ADS  Google Scholar 

  51. W. Bialek and A. Zee, J. Stat. Phys. 59 (1990) 103–115.

    Article  ADS  Google Scholar 

  52. D.K. Warland, P. Reinagel and M. Meister, J. Neurophysiol. 78 (1997) 2336–2350.

    Google Scholar 

  53. J. Wessberg, C.R. Stambaugh, J.D. Kralik, P.D. Beck, M. Laubach, J.K. Chapin, J. Kim, S. J. Biggs, M.A. Srinivasan and M.A.L. Nicolelis, Nature 408 (2000) 361–365.

    Article  ADS  Google Scholar 

  54. M. Potters and W. Bialek, J. Phys. I France 4 (1994) 1755–1775.

    Article  Google Scholar 

  55. W. Reichardt, Autocorrelation, a principle for the evaluation of sensory information by the central nervous system, in Principles of sensory communication, edited by A. Rosenblith (Wiley, New York, 1961), pp. 303–317.

    Google Scholar 

  56. R.R. de Ruyter van Steveninck, W. Bialek, M. Potters, R.H. Carlson and G.D. Lewen, Adaptive movement computation by the blowfly visual system, in Natural and Artificial Parallel Computation: Proceedings of the Fifth NEC Research Symposium, edited by D.L. Waltz (SIAM, Philadelphia, 1996), pp. 21–41.

    Google Scholar 

  57. R.R. de Ruyter van Steveninck and W. Bialek, Optimality and adaptation in motion estimation by the blowfly visual system, Proceedings of the IEEE 22nd Annual Northeast Bioengineering Conference (1996) pp. 40–41.

    Google Scholar 

  58. R.R. de Ruyter van Steveninck, W. Bialek, M. Potters and R.H. Carlson, Statistical adaptation and optimal estimation in movement computation by the blowfly visual system, in Proc. I.E.E.E. Conf. Sys. Man Cybern. (1994) pp. 302–307.

    Google Scholar 

  59. W. Bialek and R.R. de Ruyter van Steveninck (in preparation). Features and dimensions: Motion estimation in fly vision.

    Google Scholar 

  60. F. Attneave, Psych. Rev. 61 (1954) 183–193.

    Article  Google Scholar 

  61. H.B. Barlow, Sensory mechanisms, the reduction of redundancy and intelligence, in Proceedings of the Symposium on the Mechanization of Thought Processes, Vol. 2, edited by D.V. Blake and A.M. Uttley (H.M. Stationery Office, London, 1959), pp. 537–574.

    Google Scholar 

  62. H.B. Barlow, Possible principles underlying the transformation of sensory mes-sages, in Sensory Communication, edited by W. Rosenblith (MIT Press, Cambridge, 1961), pp. 217–234.

    Google Scholar 

  63. C.E. Shannon (1948), A mathematical theory of communication, Bell Sys. Tech. J. 27, 379–423 & 623-656. Reprinted in C.E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949).

    MathSciNet  MATH  Google Scholar 

  64. I. Ginzburg and T.J. Sejnowski (1996). Dynamics of Rule Induction by Making Queries: Transition Between Strategies, in 18th Annual Conference of the Cognitive Science Society, pp. 121–125 (Lawrence Erlbaum, Mahwah NJ), see also http://www.cnl.salk.edu/CNL/annual--reps/annual--rep95.html

    Google Scholar 

  65. V.V. Fedorov, V. V. Theory of Optimal Experimental Design, translated and edited by W.J. Studden and E.M. Klimko (Academic Press, New York, 1972).

    Google Scholar 

  66. M.R. DeWeese and M. Meister, Network 10 (1999) 325–340.

    Article  MATH  Google Scholar 

  67. S.B. Laughlin, Z. Naturforsch. 36c (1981) 910–912.

    Google Scholar 

  68. J.J. Atick, Could information theory provide an ecological theory of sensory processing?, in Princeton Lectures on Biophysics, edited by W. Bialek (World Scientific, Singapore, 1992), pp. 223–289.

    Google Scholar 

  69. J.H. van Hateren, J. Comp. Physiol. A 171 (1992) 157–170.

    Article  Google Scholar 

  70. D.L. Ruderman, T.W. Cronin and C.C. Chiao, J. Opt. Soc. Am. A 15 (1998) 2036–2045.

    Article  ADS  Google Scholar 

  71. N. Brenner, S.P. Strong, R. Koberle, R. de Ruyter van Steveninck and W. Bialek, Neural Comp. 12 (2000) 1531–1552.

    Article  Google Scholar 

  72. R.R. de Ruyter van Steveninck, G.D. Lewen, S.P. Strong, R. Koberle and W. Bialek, Science 275 (1997) 1805–1808.

    Article  Google Scholar 

  73. S.P. Strong, R. Koberle, R. de Ruyter van Steveninck and W. Bialek, Phys. Rev. Lett. 80 (1998) 197–200.

    Article  ADS  Google Scholar 

  74. F. Rieke, D. Warland and W. Bialek, Europhys. Lett. 22 (1993) 151–156.

    Article  ADS  Google Scholar 

  75. D. MacKay and W.S. McCulloch, Bull. Math. Biophys. 14 (1952) 127–135.

    Article  Google Scholar 

  76. E. Schneidman, N. Brenner, N. Tishby, R.R. de Ruyter van Steveninck and W. Bialek, Universality and individuality in a neural code, to appear in Advances in Neural Information Processing 13, edited by T.K. Leen, T.G. Dietterich and V. Tresp (MIT Press, Cambridge, 2001), pp. 159–165, see also physics/0005043.

    Google Scholar 

  77. R. de Ruyter van Steveninck, A. Borst and W. Bialek, Real time encoding of motion: Answerable questions and questionable answers from the fly’s visual system, in Processing Visual Motion in the Real World: A Survey of Computational, Neural and Ecological Constraints, edited by J.M. Zanker and J. Zeil (Springer-Verlag, Berlin, 2001), pp. 279–306, see also physics/0004060.

    Google Scholar 

  78. G.D. Lewen, W. Bialek and R.R. de Ruyter van Steveninck, Network 12 (2001) 317–329, see also physics/0103088.

    Google Scholar 

  79. N. Brenner, W. Bialek and R. de Ruyter van Steveninck, Neuron 26 (2000) 695–702.

    Article  Google Scholar 

  80. A.L. Fairhall, G.D. Lewen, W. Bialek and R.R. de Ruyter van Steveninck, Nature 412 (2001) 787–792.

    Article  ADS  Google Scholar 

  81. D.L. Ruderman and W. Bialek, Phys. Rev. Lett. 73 (1994) 814–817.

    Article  ADS  Google Scholar 

  82. S. Smirnakis, M.J. Berry II, D.K. Warland, W. Bialek and M. Meister, Nature 386 (1997) 69–73.

    Article  ADS  Google Scholar 

  83. W. Bialek, I. Nemenman and N. Tishby, Neural Comp. 13 (2001) 2409–2463, see also physics/0007070.

    Article  MATH  Google Scholar 

  84. W. Bialek, I. Nemenman and N. Tishby, Physica A 302 (2001) pp. 89–99, see also physics/0103076.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  85. N. Tishby, F. Pereira and W. Bialek, The information bottleneck method, in Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, edited by B. Hajek and R.S. Sreenivas (University of Illinois, 1999), pp. 368–377, see also physics/0004057.

    Google Scholar 

  86. H.S. Seung, H. Sompolinsky and N. Tishby, Phys. Rev. A 45 (1992) 6056–6091.

    Article  ADS  MathSciNet  Google Scholar 

  87. P. Grassberger, Int. J. Theor. Phys. 25 (1986) 907–938.

    Article  MATH  MathSciNet  Google Scholar 

  88. V. Vapnik, Statistical Learning Theory (John Wiley & Sons, New York, 1998).

    MATH  Google Scholar 

  89. V. Balasubramanian, Neural Comp. 9 (1997) 349–368, see also cond-mat/9601030.

    Article  MATH  Google Scholar 

  90. W. Bialek, C.G. Callan and S.P. Strong, Phys. Rev. Lett. 77 (1996) 4693–4697, see also cond-mat/9607180.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  91. C.E. Shannon, Prediction and entropy of printed English, Bell Sys. Tech. J. 30, 50–64. Reprinted in edited by N.J.A. Sloane and A.D. Wyner, Claude Elwood Shannon: Collected papers (IEEE Press, New York, 1993).

    Google Scholar 

  92. W. Hilberg, Frequenz 44 (1990) 243–248.

    Google Scholar 

  93. R.H.S. Carpenter and M.L.L. Williams, Nature 377 (1995) 59–62.

    Article  ADS  Google Scholar 

  94. L.L. Lopes and G.C. Oden, J. Exp. Psych.: Learning, Memory, and Cognition 13 (1987) 392–400.

    Article  Google Scholar 

  95. J.R. Saffran, R.N. Aslin and E.L. Newport, Science 274 (1996) 1926–1928.

    Article  ADS  Google Scholar 

  96. J.R. Saffran, E.K. Johnson, R.H. Aslin and E.L. Newport, Cognition 70 (1999) 27–52.

    Article  Google Scholar 

  97. M.D. Mauk and B.P. Ruize, Behav. Neurosci. 106 (1992) 666–681.

    Article  Google Scholar 

  98. E. Neher and B. Sakmann, Nature 260 (1976) 799–802.

    Article  ADS  Google Scholar 

  99. B. Hille, Ionic Channels of Excitable Membranes, 2d ed. (Sinauer Associates, Sunderland MA, 1992).

    Google Scholar 

  100. D. Johnston and S.-M. Wu, Foundations of Cellular Neurophysiology (MIT Press, Cambridge, 1995).

    Google Scholar 

  101. E.M.C. Jones, M. Gray-Keller and R. Fettiplace, J. Physiol. (Lond.) 518 (1999) 653–665.

    Article  Google Scholar 

  102. A.L. Hodgkin and A.F. Huxley, J. Physiol. 116 (1952a) 449–472.

    Google Scholar 

  103. A.L. Hodgkin and A.F. Huxley, J. Physiol. 116 (1952b) 473–496.

    Google Scholar 

  104. A.L. Hodgkin and A.F. Huxley, J. Physiol. 116 (1952c) 497–506.

    Google Scholar 

  105. A.L. Hodgkin and A.F. Huxley, J. Physiol. 117 (1952d) 500–544.

    Google Scholar 

  106. G. LeMasson, E. Marder and L.F. Abbott, Science 259 (1993) 1915–1917.

    Article  ADS  Google Scholar 

  107. G. Turrigiano, L.F. Abbott and E. Marder, Science 264 (1994) 974–977.

    Article  ADS  Google Scholar 

  108. N.S. Desai, L.C. Rutherford and G.G. Turrigiano, Nature Neurosci. 2 (1999) 489–491.

    Article  Google Scholar 

  109. E. Schneidman, I. Segev and N. Tishby, Information capacity and robustness of stochastic neuron models, in Advances in Neural Information Processing 12, edited by S.A. Solla, T.K. Leen and K.-R. Müller (MIT Press, Cambridge, 2000), pp. 178–184.

    Google Scholar 

  110. M.S. Goldman, J. Golowasch, E. Marder and L.F. Abbott, J. Neurosci. 21 (2001) 5229–5238.

    Google Scholar 

  111. N. Barkai and S. Leibler, Nature 387 (1997) 913–917.

    Article  ADS  Google Scholar 

  112. Z. Liu, J. Golowasch, E. Marder and L.F. Abbott, J. Neurosci. 18 (1998) 2309–2320.

    Google Scholar 

  113. J. Golowasch, M. Casey, L.F. Abbott and E. Marder, Neural Comp. 11 (1999) 1079–1096.

    Article  Google Scholar 

  114. C. Soto-Trovino, K.A. Thoroughman, E. Marder and L.F. Abbott, Nature Neurosci. 4 (2001) 297–303.

    Article  Google Scholar 

  115. M. Stemmler and C. Koch, Nature Neurosci. 2 (1999) 521–527.

    Article  Google Scholar 

  116. E. Schneidman, B. Freedman and I. Segev, Neural Comp. 10 (1998) 1679–1703.

    Article  Google Scholar 

  117. B. Agüera y Arcas, A. Fairhall and W. Bialek, What can a single neuron compute?, in Advances in Neural Information Processing 13, edited by T.K. Leen, T.G. Dietterich and V. Tresp (MIT Press, Cambridge, 2001), pp. 75–81.

    Google Scholar 

  118. B. Agüera y Arcas, A. Fairhall and W. Bialek (in preparation), Computation in a single neuron: The Hodkgin—Huxley model.

    Google Scholar 

  119. N. Chomsky, I. R. E. Trans. Inf. Theory IT-2 (1956) 113–124.

    Article  Google Scholar 

  120. S. Abney, Statistical methods and linguistics, in The Balancing Act: Combining Statistical and Symbolic Approaches to Language, edited by J.L. Klavans and P. Resnik (MIT Press, Cambridge, 1996), pp. 1–26.

    Google Scholar 

  121. G.F. Marcus, S. Vijayan, S. Bandi Rao and P.M. Vishton, Science 283 (1999) 77–80.

    Article  ADS  Google Scholar 

  122. S. Pinker, Science 283 (1999) 40–41.

    Article  ADS  Google Scholar 

  123. V. Periwal, Phys. Rev. Lett. 78 (1997) 4671–4674, see also hep-th/9703135.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  124. T.E. Holy, Phys. Rev. Lett. 79 (1997) 3545–3548, see also physics/9706015.

    Article  ADS  Google Scholar 

  125. V. Periwal (1998), Geometrical statistical inference, preprint. Available at adap-org/9801001.

    Google Scholar 

  126. T. Aida, Phys. Rev. Lett. 83 (1999) 3554–3557, see also cond-mat/9911474.

    Article  ADS  Google Scholar 

  127. I. Nemenman and W. Bialek, Phys. Rev. E 65 (2002) 026137, see also cond-mat/0009165.

    Article  ADS  Google Scholar 

  128. I. Nemenman, F. Shafee and W. Bialek, Entropy and inference, revisited, to appear in Advances in Neural Information Processing 14, edited by T.G. Dietterich, S. Becker and Z. Ghahramani (MIT Press, Cambridge, 2002), see also physics/0108025.

    Google Scholar 

  129. M. Redington, N. Chater and S. Finch, Cog. Sci. 22 (1998) 425–469.

    Article  Google Scholar 

  130. F. Pereira, N. Tishby and L. Lee, Distributional clustering of english words, 30th Annual Meeting of the Association for Computational Linguistics, (1993) pp. 183–190.

    Google Scholar 

  131. N. Slonim and N. Tishby, Document clustering via word clusters using the information bottleneck method, in Proc. of the 23rd Annual ACM SIGIR Conference on Research and Development in Information Retrieval (2000) pp. 208–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Flyvbjerg F. Jülicher P. Ormos F. David

Rights and permissions

Reprints and permissions

Copyright information

© 2002 EDP Sciences, Springer-Verlag

About this paper

Cite this paper

Bialek, W. (2002). Thinking About The Brain. In: Flyvbjerg, F., Jülicher, F., Ormos, P., David, F. (eds) Physics of bio-molecules and cells. Physique des biomolécules et des cellules. Les Houches - Ecole d’Ete de Physique Theorique, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45701-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45701-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44132-8

  • Online ISBN: 978-3-540-45701-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics