Skip to main content

On the design of optimization criteria for multiple sequence alignment

  • Chapter
  • First Online:
Biological Evolution and Statistical Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 585))

  • 1061 Accesses

Abstract

Multiple sequence alignment (MSA) is important in functional, structural and evolutionary studies of sequence data. While MSA construction has traditionally been an interactive process, the rapid growth of genetic sequence data has engendered a need for automated sequence analysis without human intervention. This requires more accurate methods based on rigorous mathematical models that reflect sequence biology in a realistic way. Focusing on MSA as an optimization problem, we examine the problem of unifying mathematical tractability with biological accuracy in cost function design. In particular, we consider tree alignment, which is often viewed as the most “biological” of the rigorous approaches to MSA. We point out several important pitfalls in current optimization approaches to MSA and identify characteristics for good cost function design. Design issues specific to approximation algorithms are also addressed. We hope these ideas will lead to future research on a biologically realistic and mathematically rigorous approach to MSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chan, A. Wong, D. Chiu: Bulletin of Mathematical Biology 54, 563–598 (1992)

    PubMed  CAS  Google Scholar 

  2. P. Pevsner: Journal of Applied Mathematics 52, 1763–1779 (1992)

    Google Scholar 

  3. R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Cambridge University Press, 1999)

    Google Scholar 

  4. M. McClure, T. Vasi, W. Fitch: Mol. Biol. Evol. 11, 571–592 (1994)

    PubMed  CAS  Google Scholar 

  5. D.J. Bacon, W.F. Anderson: Journal of Molecular Biology 191, 153–161 (1986)

    Article  PubMed  CAS  Google Scholar 

  6. M. Murata, J.S. Richardson, J.L. Sussman: Proc.Natl.Acad.Sci. USA 82, 3073–3077 (1985)

    Article  PubMed  CAS  Google Scholar 

  7. D. Sanko.: Journal of Applied Mathematics 28, 443–453 (1975)

    Google Scholar 

  8. D. Sanko., R.J. Cedergren: Simultaneous Comparison of Three or More Sequences Related by a Tree, in Timewarps, Edits and Macromolecules: The Theory and Practise of Sequence Comparison (Addison-Wesley, Reading, MA, 1983), pp. 253–258

    Google Scholar 

  9. S. Altschul, D. Lipman: Journal of Applied Mathematics 49(1), 197–209 (1989)

    Google Scholar 

  10. D. Gusfield: Bulletin of Mathematical Biology 55, 141–154 (1993)

    PubMed  CAS  Google Scholar 

  11. E. Sweedyk, T. Warnow: (1992), Manuscript

    Google Scholar 

  12. L. Wang, T. Jiang: Journal of Computational Biology 1(4), 337–348 (1994)

    Article  PubMed  CAS  Google Scholar 

  13. M.R. Garey, D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman and Company, 1979)

    Google Scholar 

  14. T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to Algorithms (MIT Press/McGraw-Hill, 1990)

    Google Scholar 

  15. J.C. Setubal, J. Meidanis: Introduction to Computational Molecular Biology (PWS Publishing Company, Boston, 1997)

    Google Scholar 

  16. W.R. Taylor: CABIOS 3(2), 81–7 (1987)

    PubMed  CAS  Google Scholar 

  17. J.D. Thompson, D.G. Higgins, T.J. Gibson: NAR 22(22), 4673–80 (1994)

    Article  PubMed  CAS  Google Scholar 

  18. D. Hochbaum: Approximation Algorithms for NP-hard Croblems (PWS Publishing Company, Boston, 1997)

    Google Scholar 

  19. V. Bafna, E.L. Lawler, P. Pevzner: Approximation Algorithms for Multiple Sequence Alignment, in 5th Ann. Symp. On Pattern Combinatorial Matching Vol. 807 (1994), pp. 43–53

    Google Scholar 

  20. R. Ravi, J.D. Kececioglu: Approximation algorithms for multiple sequence alignment under a fixed evolutionary tree, in 6th Ann. Symp. On Pattern Combinatorial Matching, Springer Verlag Lecture notes in Computer Science (1995)

    Google Scholar 

  21. L. Wang, D. Gusfield: Improved Approximation Algorithms for Tree Alignment, in 7thA nn. Symp. On Pattern Combinatorial Matching Vol. 1075 (1996), pp. 220–33

    Google Scholar 

  22. J. Jiang, L. Wang, E. Lawler: Algorithmica 16, 302–15 (1996)

    Google Scholar 

  23. T. Jiang, E. Lawler, L. Wang: Aligning sequences via an evolutionary tree: Complexity and approximation, in Proceedings of the Symposium on the Theoretical Aspects of Computer Science (1994), pp. 760–769

    Google Scholar 

  24. D. Roos: J. Biol. Chem. 268, 6269–6280 (1993)

    PubMed  CAS  Google Scholar 

  25. J. Cavender: Mathematical Biosciences 40, 271–280 (1978)

    Article  Google Scholar 

  26. J. Felsenstein: Syst. Zool. 22, 240–249 (1978)

    Article  Google Scholar 

  27. M. Farach, S. Kannan: Efficient algorithms for inverting evolution, in Proceedings of the Symposium on the Theoretical Aspects of Computer Science (1996)

    Google Scholar 

  28. R.G. Donald, D.S. Roos: Proc.Natl.Acad.Sci. USA 90, 11,703–11,707 (1993)

    Article  PubMed  CAS  Google Scholar 

  29. R.G.K. Donald, D.S. Roos: Molec. Biochem. Parasitol. 63, 243–253 (1994)

    Article  CAS  Google Scholar 

  30. J. Hyde: Pharmacol Ther 48(1), 45–59 (1990)

    Article  PubMed  Google Scholar 

  31. M. Tanaka, H.M. Gu, D.J. Bzik, W.B. Li, J.W. Inselburg: Mol Biochem Parasitol 39, 127–134 (1990)

    Article  PubMed  CAS  Google Scholar 

  32. M. Reynolds, D. Carter, M. Schumacher, D.S. Roos: Personal communication

    Google Scholar 

  33. D.S. Roos: Personal communication

    Google Scholar 

  34. W. Gilbert: Nature 271, 501 (1978)

    Article  PubMed  CAS  Google Scholar 

  35. T.C. Sudhof, J.L. Goldstein, M.S. Brown, D.W. Russell: Science 228, 815–822 (1985)

    Article  PubMed  CAS  Google Scholar 

  36. T.C. Sudhof, D.W. Russell, J.L. Goldstein, M.S. Brown, R. Sanchez-Pescador, G.I. Bell: Science 228, 893–895 (1985)

    Article  PubMed  CAS  Google Scholar 

  37. R.L. Dorit, W. Gilbert: Curr Opin Genet Dev 1, 464–469 (1991)

    Article  PubMed  CAS  Google Scholar 

  38. M.D. Adams et al.: Science 287(5461), 2185–9 (2000)

    Article  PubMed  Google Scholar 

  39. J.C. Venter et al.: Science 291(5507), 1304–51 (2001)

    Article  PubMed  CAS  Google Scholar 

  40. P. Bork, R.F. Doolittle: Proc.Natl.Acad.Sci. USA 89, 8990–8994 (1992)

    Article  PubMed  CAS  Google Scholar 

  41. C.B. Stewart, A.C. Wilson: Cold Spring Harbor Symposium on Quantitative Biology 52, 891–899 (1987)

    CAS  Google Scholar 

  42. R. Gutell, N. Larsen, C. Woese: Microbiological Reviews 58(1), 10–26 (1994)

    PubMed  CAS  Google Scholar 

  43. C.R. Woese, S. Winker, R.R. Gutell: Proc.Natl.Acad.Sci. USA 87, 8467–8471 (1990)

    Article  PubMed  CAS  Google Scholar 

  44. R. Luthy, A.D. McLachlan, D. Eisenberg: Proteins 10, 229–239 (1991)

    Article  PubMed  CAS  Google Scholar 

  45. P. Mehta, J. Heringa, P. Argos: Protein Science 4, 2517–2525 (1995)

    PubMed  CAS  Google Scholar 

  46. M. Kreitman, R.R. Hudson: Genetics 127, 565–582 (1991)

    PubMed  CAS  Google Scholar 

  47. S.W. Schaeffer, C.F. Aquadro: Genetics 117, 61–73(1987)

    PubMed  CAS  Google Scholar 

  48. G. Barton, M. Sternberg: Protein Engineering 1, 89–94 (1987)

    Article  PubMed  CAS  Google Scholar 

  49. A. Lesk, C. Chothia: Journal of Molecular Biology 136, 225–270 (1980)

    Article  PubMed  CAS  Google Scholar 

  50. A. Godzik: Protein Science 5, 1325–1338 (1996)

    PubMed  CAS  Google Scholar 

  51. A. Aevarsson: Journal of Molecular Evolution 41, 1096–1104 (1995)

    Article  CAS  Google Scholar 

  52. A. Valencia, M. Kjeldgaard, E.F. Pai, C. Sander: Proc.Natl.Acad.Sci. USA 88, 5443–5447 (1991)

    Article  PubMed  CAS  Google Scholar 

  53. G. Vriend, C. Sander: Proteins 11(1), 52–58 (1991)

    Article  PubMed  CAS  Google Scholar 

  54. L. Holm, C. Sander: Journal of Molecular Biology (1993)

    Google Scholar 

  55. S. Pascarella, P. Argos: Protein Engineering 5, 121–37 (1992)

    Article  PubMed  CAS  Google Scholar 

  56. A. Godzik, J. Skolnick, A. Kolinski: Protein Engineering 6(8), 801–10 (1993)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durand, D., Farach-Colton, M. (2002). On the design of optimization criteria for multiple sequence alignment. In: Lässig, M., Valleriani, A. (eds) Biological Evolution and Statistical Physics. Lecture Notes in Physics, vol 585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45692-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45692-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43188-6

  • Online ISBN: 978-3-540-45692-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics