Skip to main content
Log in

Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The G domain and domain II in the crystal structure of Thermus thermophilus elongation factor G (EF-G) were compared with the homologous domains in Thermus aquaticus elongation factor Tu (EF-Tu). Sequence alignment derived from the structural superposition was used to define conserved sequence elements in domain II. These elements and previously known conserved sequence elements in the G domain were used to guide the alignment of the sequences of Sulfolobus acidocaldarius elongation factor 2, human elongation factor 2, and Escherichia coli initiation factor 2 and release factor 3 to the aligned sequences of EF-G and EF-Tu. This alignment, which deviates from previously published alignments, has evolutionary implications and leads to alternative interpretations of biochemical data concerning the interaction of elongation factors with the α-sarcin/ricin region of the ribosome. A single conserved sequence motif in domain II was identified and used to further characterize the GTPase subfamily of translation factors and related proteins. It was shown that the motif is found in most if not all the members of the family. Apparently, the common characteristic of these GTPases is an extensive consensus structural unit that possibly accounts for a similar interaction with the ribosome and is composed of two domains homologous to the G domain and domain II in EF-Tu and EF-G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ævarsson A, Brazhnikov E, Garber M, Zheltonosova J, Chirgadze Y, Alkaradaghi S, Svensson LA, Liljas A (1994) Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J 13:3669–3677

    Google Scholar 

  • Ann DK, Moutsatsos IK, Nakamura T, Lin HH, Mao P-L, Lee M-J, Chin S, Liem RKH, Wang E (1991) Isolation and characterization of the rat chromosomal gene for a polypeptide (pS1) antigenitally related to statin. J Biol Chem 266:10429–10437

    Google Scholar 

  • Attwood TK, Beck ME (1994) PRINTS—a protein motif fingerprint database. Protein Eng 7:841–848

    Google Scholar 

  • Bairoch A, Boeckmann B (1993) The SWISS-PROT protein data bank, recent developments. Nucleic Acids Res 21:3093–3096

    Google Scholar 

  • Barton GJ, Sternberg MJE (1987) Evaluation and improvement in the automatic alignment of protein sequences. Protein Eng 1:89–94

    Google Scholar 

  • Berchtold H, Reshetnikova L, Reiser COA, Schirmer NK, Sprinzl M, Hilgenfeld R (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126–132

    Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127

    Google Scholar 

  • Brünger AT, Milburn MV, Tong L, deVos AM, Jancarik J, Yamaizumi Z, Nishimura S, Ohtsuka E, Kim S-H (1990) Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain. Proc Natl Acad Sci USA 87:4849–4853

    Google Scholar 

  • Burdett V (1991) Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J Biol Chem 266: 2872–2877

    Google Scholar 

  • Cammarano P, Palm P, Creti R, Ceccarelli E, Sanangelantoni AM, Tiboni O (1992) Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences—phylogenetic coherence and structure of the archaeal domain. J Mol Evol 34:396–405

    Google Scholar 

  • Cervantes E, Sharma SB, Maillet F, Vasse J, Truchet G, Rosenberg C (1989) The Rhizobium meliloti host range nodQ gene encodes a protein which shares homology with translation elongation and initiation factors. Mol Microbiol 3:745–755

    Google Scholar 

  • Creti R, Ceccarelli E, Bocchetta M, Sanangelantoni AM, Tiboni O, Palm P, Cammarano P (1994) Evolution of translational elongation factor (EF) sequences—reliability of global phylogenies inferred from EF-1 α(Tu) and EF-2(G) proteins. Proc Natl Acad Sci USA 91:3255–3259

    CAS  PubMed  Google Scholar 

  • Czworkowski J, Wang J, Steitz TA, Moore PB (1994) The crystal structure of elongation factor G complexed with GDP, at 2.7 angstrom resolution. EMBO J 13:3661–3668

    Google Scholar 

  • Dever TE, Glynias ML Merrick WC (1987) GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84:1814–1818

    CAS  PubMed  Google Scholar 

  • Deveraux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis program for the VAX. Nucleic Acids Res 12: 387–395

    CAS  PubMed  Google Scholar 

  • Forchhammer K, Leinfelder W, Bock A (1989) Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342:453–456

    Google Scholar 

  • Genetic Computer Group Inc (1994) Program manual for the Wisconsin package, version 8, September 1994. Genetic Computer Group, 575 Science drive, Madison, WI 53711

    Google Scholar 

  • Grentzmann G, Brechemierbaey D, Heurgue V, Mora L, Buckingham RH (1994) Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci USA 91:5848–5852

    Google Scholar 

  • Gribskov M, Mclachlan AD, Eisenberg D (1987) Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA 84: 4355–4358

    Google Scholar 

  • Guillot D, Lavergne JP, Reboud JP (1993) Trp(221) is involved in the protective effect of elongation factor eEF-2 on the ricin/α-sarcin site of the ribosome. J Biol Chem 268:26082–26084

    Google Scholar 

  • Hoshino S, Miyazawa H, Enomoto T, Hanaoka F, Kikuchi Y, Kikuchi A, Ui M (1989) A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J 8:3807–3814

    Google Scholar 

  • Iwabe N, Kuma K-I, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eucaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Google Scholar 

  • Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119

    Google Scholar 

  • Jurnak F (1994) The ABC of EF-G. Structure 2:785–788

    Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    CAS  PubMed  Google Scholar 

  • Kaziro Y (1978) The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochim Biophys Acta 505:95–127

    Google Scholar 

  • Kjeldgaard M Nyborg J (1992) Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol 223:721–742

    Google Scholar 

  • Kjeldgaard M, Nissen P, Thirup S, Nyborg J (1993) The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1:35–50

    Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950

    Article  Google Scholar 

  • Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG (1988) Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66: 45–54

    Google Scholar 

  • Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369:621–628

    Google Scholar 

  • Lechner K, Heller G, Böck A (1988) Gene for the diphteria toxin-susceptible elongation factor 2 from Methanococcus vannielii. Nucleic Acids Res 16:7817–7826

    Google Scholar 

  • Leyh TS, Vogt TF, Suo Y (1992) The DNA sequence of the sulfate activation locus from Escherichia coli K-12. J Biol Chem 267: 10405–10410

    Google Scholar 

  • Liljas A, Thirup S, Matheson AT (1986) Evolutionary aspects of ribosome-factor interactions. Chemica Scripta 26B:109–119

    Google Scholar 

  • March PE, Inouye M (1985) GTP-binding membrane protein of Escherichia coli with sequence homology to initiation factor 2 and elongation factors Tu and G. Proc Natl Acad Sci USA 82:7500–7504

    Google Scholar 

  • Mikuni O, Ito K, Moffat J, Matsumura K, McCaughan K, Nobukuni T, Tate W, Nakamura Y (1994) Identification of the prfC gene, which encodes peptide-chain-release factor of Escherichia coli. Proc Natl Acad Sci USA 91:5798–5802

    Google Scholar 

  • Milburn MV, Tong L, de Vos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim S-H (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945

    Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    CAS  PubMed  Google Scholar 

  • Noel JP, Hamm HE, Sigler PB (1993) The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366:654–662

    Google Scholar 

  • Ogiwara A, Uchiyama I, Seto Y, Kanehisa M (1992) Construction of a dictionary of sequence motifs that characterize groups of related proteins. Protein Eng 5:479–488

    Google Scholar 

  • PaiEF, Kabsch W, Krengel U, Holmes KC, John J. Wittinghofer (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214

    Google Scholar 

  • Peter ME, Schirmer NK, Reiser COA, Sprinzl M (1990) Mapping the effector region in Thermus thermophilus elongation factor Tu. Biochemistry 29:2876–2884

    Google Scholar 

  • Plunkett GIII, Burland V, Daniels DL, Blattner FR (1993) Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res 21:3391–3398

    Google Scholar 

  • Rapp G, Klaudiny J, Hagendorff G, Luck MR, Scheit KH (1989) Complete sequence of the coding region of human elongation factor 2 (EF-2) by enzymatic amplification of cDNA from human ovarian granulosa cells. Biol Chem Hoppe Seyler 370:1071–1075

    Google Scholar 

  • Sacerdot C, Dessen P, Hershey JW, Plumbridge JA, Grunberg-Manago M (1984) Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. Proc Natl Acad Sci USA 81:7787–7791

    Google Scholar 

  • Sanchez-Peschador R, Brown JT, Roberts M, Urdea M (1988) Homology of the TetM with translational factors: implications for potential modes of tetM conferred tetracyclin resistance. Nucleic Acids Res 16:1218

    Google Scholar 

  • Saqi MAS, Sternberg MJE (1994) Identification of sequence motifs from a set of proteins with related function. Protein Eng 7:165–171

    Google Scholar 

  • Schröder J, Klink F (1991) Gene for the ADP-ribosylatable elongation factor 2 from the extreme thermoacidophilic archaebacterium Sulfolobus acidocaldarius—cloning, sequencing, comparative analysis. Eur J Biochem 195:321–327

    Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    CAS  PubMed  Google Scholar 

  • Szewczak AA, Moore PB, Chan YL, Wool IG (1993) The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc Natl Acad Sci USA 90:9581–9585

    Google Scholar 

  • Tubulekas I, Hughes D (1993) A single amino acid substitution in elongation factor-Tu disrupts interaction between the ternary complex and the ribosome. J Bacteriol 175:240–250

    Google Scholar 

  • Vingron M, Waterman MS (1994) Sequence alignment and penalty choice-review of concepts, case studies and implications. J Mol Biol 235:1–12

    Google Scholar 

  • Voss RH, Hartmann RK, Lippmann C, Alexander C, Jahn O, Erdmann VA (1992) Sequence of the tufA gene encoding elongation factor EF-Tu from Thermus aquaticus and overproduction of the protein in Escherichia coli. Eur J Biochem 207:839–846

    Google Scholar 

  • Wool IG, Gluck A, Endo Y (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci 17:266–269

    Google Scholar 

  • Yakhnin AV, Vorozheykina DP, Matvienko NI (1989) Nucleotide sequence of the Thermus thermophilus HB8 gene coding for elongation factor G. Nucleic Acids Res 17:8863

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ævarsson, A. Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation. J Mol Evol 41, 1096–1104 (1995). https://doi.org/10.1007/BF00173191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173191

Key words

Navigation