Skip to main content

Part of the book series: Les Houches - Ecole d’Ete de Physique Theorique ((LHSUMMER,volume 73))

Abstract

An experiment is described which allows to measure the caloric curve of size selected sodium cluster ions. This allows to determine rather easily the melting temperatures, and latent heats in the size range between 55 and 340 atoms per cluster. A more detailed analysis is necessary to show that the cluster Na +147 has a negative microcanonical heat capacity, and how to determine the entropy of the cluster from the data.

The work was supported by the Deutsche Forschungsgemeinschaft through SFB 276.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Pawlow, Z. Phys. Chem. 65 (1909) 1.

    Google Scholar 

  2. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath and G.L. Allen, Phys. Rev. Lett. 77 (1996) 99.

    Article  ADS  Google Scholar 

  3. S. Berry, Scient. Amer. 263 (1990) 50.

    Google Scholar 

  4. P. Labastie and R.L. Whetten, Phys. Rev. Lett. 65 (1990) 1567.

    Article  ADS  Google Scholar 

  5. C.L. Cleveland, U. Landman, T.G. Schaaf, M.N. Shafigullin, P.W. Stephens and R.L. Whetten, Phys. Rev. Lett. 79 (1997) 1873.

    Article  ADS  Google Scholar 

  6. F. Calvo and F. Spiegelmann, J. Chem. Phys. 112 (2000) 2888.

    Article  ADS  Google Scholar 

  7. M.Yu. Efremov et al., Phys. Rev. Lett. 85 (2000) 3560.

    Article  ADS  Google Scholar 

  8. U. Buck and I. Ettischer, J. Chem. Phys. 100 (1994) 6974.

    Article  ADS  Google Scholar 

  9. U. Even, N. Ben-Horin and J. Jortner, Phys. Rev. Lett. 62 (1989) 140.

    Article  ADS  Google Scholar 

  10. T.P. Martin, Phys. Rep. 273 (1996) 199.

    Article  ADS  Google Scholar 

  11. J.W. Hovick and L.S. Bartell, J. Mol. Struct. 413 (1997) 615.

    Article  ADS  Google Scholar 

  12. A. Hirt, D. Gerion, I.M.L. Billas, A. Châtelain and W.A. de Heer, Z. Phys. D 40 (1997) 160.

    Google Scholar 

  13. M. Schmidt, R. Kusche, W. Kronmüller, B.V. Issendorff and H. Haberland, Phys. Rev. Lett. 79 (1997) 99.

    Article  ADS  Google Scholar 

  14. M. Schmidt, R. Kusche, B.V. Issendorff and H. Haberland, Nature 393 (1998) 238.

    Google Scholar 

  15. R. Kusche, Th. Hippler, M. Schmidt, B.V. Issendorff and H. Haberland, Eur. Phys. J. D9 (2000) 1.

    Google Scholar 

  16. M. Schmidt et al., in The Physics and Chemistry of Clusters Proceedings of Nobel Symposium 117 (World Scientific, Singapore, 2001), p. 326.

    Google Scholar 

  17. G. Bertsch, Science 277 (1997) 1619.

    Google Scholar 

  18. R.S. Berry, Nature 393 (1998) 212.

    Google Scholar 

  19. See Chapter 3.2 of [53].

    Google Scholar 

  20. M.F. Jarrold, Part 2.7 of [53].

    Google Scholar 

  21. A. Aguado, J.M. Lopez, J.A. Alonso and M.J. Stoll, J. Chem. Phys. 111 (1999) 6026.

    Article  ADS  Google Scholar 

  22. A. Rytkonen, H. Hakkinen and M. Manninen, Phys. Rev. Lett. 80 (1998) 3940.

    Article  ADS  Google Scholar 

  23. N. Ju and A. Bulgac, Phys. Rev. B 48 (1993) 2721.

    Google Scholar 

  24. A. Aguado, J.M. Lopez, J.A. Alonso and M.J. Stott, J. Phys. Chem. B 105 (2001) 2386.

    Article  Google Scholar 

  25. Y.J. Lee, E.-K. Lee, S. Kim and R.M. Nieminen, Phys. Rev. Lett. 86 (2001) 999.

    Article  ADS  Google Scholar 

  26. J. Farges, M.F. de Feraudy, B. Raoult and G. Torchet, Surf. Sci. 106 (1981) 95.

    Article  ADS  Google Scholar 

  27. A.A. Shvartsburg and M.F. Jarrold, Phys. Rev. Lett. 85 (2000) 2530.

    Article  ADS  Google Scholar 

  28. H. Haberland, Physics World (December 2000), p. 27.

    Google Scholar 

  29. Th. Bachels, H.-J. Güntherodt and R. Schäfer, Phys. Rev. Lett. 85 (2000) 1250.

    Article  ADS  Google Scholar 

  30. R. Kofman, P. Cheyssac and F. Celestini, Phys. Rev. Lett. 86 (2001) 1388.

    Article  ADS  Google Scholar 

  31. S. Krückeberg, S. Schoos, M. Maier-Borst and J.H. Parks, Phys. Rev. Lett. 85 (2000) 4494–4497.

    Article  ADS  Google Scholar 

  32. H. Haberland, B.V. Issendorff, Th. Kolar, H. Kornmeier, Ch. Ludewigt and A. Risch, Phys. Rev. Lett. 67 (1991) 3290; H. Haberland, B.V. Issendorff, J. Yufeng and Th. Kolar, Phys. Rev. Lett. 69 (1992) 3212.

    Article  ADS  Google Scholar 

  33. Landau-Lifshitz, Statistical Physics, Vol. 5 of Course of Theoretical Physics (Pergamon Press, London, Paris, 1958).

    Google Scholar 

  34. D.H.E. Gross, Rep. Prog. Phys. 53 (1990) 605.

    Article  ADS  Google Scholar 

  35. A. Hüller, Z. Phys. B 93 (1994) 401.

    Google Scholar 

  36. R. Schlipper, R. Kusche, B. von Issendorff and H. Haberland, Appl. Phys. A 72 (2001) 255, and Ph.D. Thesis, R. Schlipper, unpublished.

    Google Scholar 

  37. M. Brack, Rev. Mod. Phys. 65 (1993) 677.

    Article  ADS  Google Scholar 

  38. W. de Heer, Rev. Mod. Phys. 65 1993 611.

    Google Scholar 

  39. H. Haberland, in Metal Clusters, edited by W. Ekardt (Wiley, 1999).

    Google Scholar 

  40. W. Thirring, Z. Phys. 235 (1970) 339.

    Article  ADS  Google Scholar 

  41. D. Lynden-Bell, Physica A 263 (1999) 293.

    Google Scholar 

  42. M. Bixon and J. Jortner, J. Chem. Phys. 91 (1989) 1631.

    Article  ADS  Google Scholar 

  43. M. D’Agostino et al., Phys. Lett. B 473 (2000) 219.

    Google Scholar 

  44. M. Schmidt, R. Kusche, Th. Hippler, J. Donges, W. Kronmüller, B.V. Issendorff and H. Haberland, Phys. Rev. Lett. (2001).

    Google Scholar 

  45. M. Schmidt et al., unpublished results.

    Google Scholar 

  46. L. van Hove, Physica 15 (1949) 951.

    Google Scholar 

  47. G. Strobl, Eur. Phys. J. E 3 (2000) 165.

    Google Scholar 

  48. K. Westesen, Colloid. Polym. Sci. 278 (2000) 608.

    Article  Google Scholar 

  49. Clusters of Atoms and Molecules I, Springer Series in Chemical Physics, Vol. 52, edited by Haberland (Springer, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Guet P. Hobza F. Speigelman F. David

Rights and permissions

Reprints and permissions

Copyright information

© 2001 EDP Sciences, Springer-Verlag

About this chapter

Cite this chapter

Haberland, H. (2001). Melting of Clusters. In: Guet, C., Hobza, P., Speigelman, F., David, F. (eds) Atomic clusters and nanoparticles. Agregats atomiques et nanoparticules. Les Houches - Ecole d’Ete de Physique Theorique, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45621-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45621-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42908-1

  • Online ISBN: 978-3-540-45621-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics