Skip to main content

Micromagnetic Simulation of Switching Events

  • Chapter
  • First Online:
Advances in Solid State Physics

Abstract

Magnetic switching of small particles, thin film elements and magnetic nanowires becomes increasingly important in magnetic storage and magneto electronic devices. Micromagnetic switching events are studied using a hybrid finite element / boundary element method. The space discretization of the Gilbert equation leads to a system of ordinary differential equations. Its numerical integration provides the time evolution of the magnetization under the influence of an external field. Thermal fluctuations may be treated by a random field. The reversal mode drastically depends on the Gilbert damping constant. Decreasing the damping constant from α = 1 to α ≤ 0.1 changes the reversal mode from uniform rotation to inhomogeneous switching. The decrease of the damping leads to the formation of vortices in circular nanodots and to a nucleation process in columnar grains. Elongated Co particles reverse by rotation if the length of the particle is smaller than 25nm. Irreversible switching of longer particles occurs due to the formation of a nucleus of reversed magnetization and successive domain wall motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. J. Kirk, J. N. Chapman and C. D. W. Wilkinson: Switching fields and magnetostatic interactions of thin film magnetic nanoelements, Appl. Phys. Lett. 71, 539–541 (1997)

    Article  CAS  Google Scholar 

  2. C. H. Back, J. Heidmann, J. McCord: Time resolved Kerr microscopy: Magnetization dynamics in thin film write heads, IEEE Trans. Magn. 35, 637–642(1999)

    Article  Google Scholar 

  3. R. Kikuchi: On the minimum of magnetization reversal time, J. Appl. Phys. 27, 1352–1357 (1956)

    Article  Google Scholar 

  4. T. Leineweber, H. Kronmüller: Dynamics of magnetisation states, J. Magn. Magn. Mater. 192, 575–590 (1999)

    Article  CAS  Google Scholar 

  5. R. H. Koch et al.: Magnetization reversal in micron-sized magnetic thin films, Phys. Rev. Lett. 81, 4512–4515 (1998)

    Article  CAS  Google Scholar 

  6. G. Albuquerque, J. Miltat, A. Thiaville: Coherent spin structures dynamics: numerics and application th high density magnetic random access memories (MRAMs), in, 16th IMACS World Congress On Scientific Computation, Applied Mathematics and Simulation, Lausanne, Switzerland, 2000, M. Deville, R. Owens (Eds.)

    Google Scholar 

  7. J. L. García-Palacios, F. J. Lázaro: Langevin-dynamics study of the dynamical properties of small magnetic particles, Phys. Rev. B 58 14937–14958 (1998)

    Article  Google Scholar 

  8. K. Zhang, D. R. Fredkin: Stochastic dynamic micromagnetic study of fine particles, J. Appl. Phys. 85 5208–5210 (1999)

    Article  CAS  Google Scholar 

  9. T. Schrefl, J. Fidler: Modelling of Exchange-Spring Permanent Magnets, J. Magn. Magn. Mater. 177 970–975 (1998)

    Article  Google Scholar 

  10. D. R. Fredkin, T. R. Koehler: Hybrid method for computing demagnetizing fields, IEEE Trans. Magn. 26 415–417 (1990)

    Article  Google Scholar 

  11. T. L. Gilbert: A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  12. W. F. Brown, Jr.:, Micromagnetics, (Wiley, New York, 1963)

    Google Scholar 

  13. D. Hinzke, U. Nowak: Magnetization switching in nanowires: Monte Carlo study with fast Fourier transformation for dipolar fields, J. Magn. Magn. Mater., to appear.

    Google Scholar 

  14. N. G. van Kampen: Stochastic processes in physics and chemistry, (Norh-Holland, Amsterdam, 1992)

    Google Scholar 

  15. A. C. Hindmarsh, L. R. Petzold: Algorithms and software for ordinary differential equations: part II: higher order methods and software packages, Computers in Physics 9, 148–155 (1995)

    Article  Google Scholar 

  16. D. Weller, A. Moser: Thermal effect limits in ultrahigh-density magnetic recording, IEEE Trans. Magn. 35, 4423–4439 (1999)

    Article  CAS  Google Scholar 

  17. L. Néel: Théorie du trainage magnétique, Ann. Geophys. 5, 99–136 (1949)

    Google Scholar 

  18. W. F. Brown, Jr.: Thermal fluctuations of a single-domain particle, Phys. Rev. 130, 1677–1686 (1963)

    Article  Google Scholar 

  19. H.-B. Braun: Kramers’s rate theory, broken symmetries, and magnetization reversal (invited), J. Appl. Phys. 76, 6310–6315 (1994)

    Article  CAS  Google Scholar 

  20. R. Street, D. C. Crew: Fluctuation aftereffects in magnetic materials, IEEE Trans. Magn. 35, 4407–4413 (1999)

    Article  Google Scholar 

  21. H.-J. Braun, Nucleation in ferromagnetic nanowires—magnetostatics and topology, J. Appl. Phys. 85, 6172–6174 (1999)

    Article  CAS  Google Scholar 

  22. F. L. Li, R. M. Metzger, W. D. Doyle: Influence of particle size on the magnetic viscosity and activation volume of α-Fe nanowires in alumite films, IEEE Trans. Magn. 33, 4423–4439 (1997)

    Google Scholar 

  23. W. Scholz, T. Schrefl and J. Fidler: Mesh refinement in FE-micromagnetics for multi-domain Nd2Fe14B particles, J. Magn. Magn. Mater. 196–197, 933–934 (1999)

    Article  Google Scholar 

  24. D. Suess, T. Schrefl and J. Fidler: Reversal modes, thermal stability, and exchange length in perpendicular recording media, IEEE Trans Magn. (in press)

    Google Scholar 

  25. D. Suess, T. Schrefl, J. Fidler and V. Tsiantos: Reversal dynamics of interacting circular nanomagnets, IEEE Trans Magn. (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrefl, T., Forster, H., Suess, D., Scholz, W., Tsiantos, V., Fidler, J. (2001). Micromagnetic Simulation of Switching Events. In: Kramer, B. (eds) Advances in Solid State Physics. Advances in Solid State Physics Volume 41, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44946-9_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-44946-9_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42000-2

  • Online ISBN: 978-3-540-44946-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics