Skip to main content

Micromagnetism

  • Living reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Computational micromagnetics is widely used for the design and development of magnetic devices. The theoretical background of these simulations is the continuum theory of micromagnetism. It treats magnetization processes on a significant length scale which is small enough to resolve magnetic domain walls and large enough to replace atomic spins by a continuous function of position. The continuous expression for the micromagnetic energy terms is either derived from their atomistic counterpart or result from symmetry arguments. The equilibrium conditions for the magnetization and the equation of motion are introduced. The focus of the discussion lies on the basic building blocks of micromagnetic solvers. Numerical examples illustrate the micromagnetic concepts. An open-source simulation environment was used to address the ground state of thin film magnetic element, initial magnetization curves, stress-driven switching of magnetic storage elements, the grain size dependence of coercivity of permanent magnets, and damped oscillations in magnetization dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fukuda, H., Nakatani, Y.: Recording density limitation explored by head/media co-optimization using genetic algorithm and GPU-accelerated LLG. IEEE Trans. Magn. 48(11), 3895–3898 (2012)

    Article  ADS  Google Scholar 

  2. Greaves, S., Katayama, T., Kanai, Y., Muraoka, H.: The dynamics of microwave-assisted magnetic recording. IEEE Trans. Magn. 51(4), 1–7 (2015)

    Article  Google Scholar 

  3. Wang, H., Katayama, T., Chan, K.S., Kanai, Y., Yuan, Z., Shafidah, S.: Optimal write head design for perpendicular magnetic recording. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Article  Google Scholar 

  4. Kovacs, A., Oezelt, H., Schabes, M.E., Schrefl, T.: Numerical optimization of writer and media for bit patterned magnetic recording. J. Appl. Phys. 120(1), 013902 (2016)

    Article  ADS  Google Scholar 

  5. Vogler, C., Abert, C., Bruckner, F., Suess, D., Praetorius, D.: Areal density optimizations for heat-assisted magnetic recording of high-density media. J. Appl. Phys. 119(22), 223903 (2016)

    Article  ADS  Google Scholar 

  6. Makarov, A., Sverdlov, V., Osintsev, D., Selberherr, S.: Fast switching in magnetic tunnel junctions with two pinned layers: micromagnetic modeling, IEEE Trans. Magn. 48(4), 1289–1292 (2012)

    Article  ADS  Google Scholar 

  7. Lacoste, B., de Castro, M.M., Devolder, T., Sousa, R., Buda-Prejbeanu, L., Auffret, S., Ebels, U., Ducruet, C., Prejbeanu, I., Rodmacq, B., Dieny, B., Vila, L.: Modulating spin transfer torque switching dynamics with two orthogonal spin-polarizers by varying the cell aspect ratio. Phys. Rev. B 90(22), 224404 (2014)

    Article  ADS  Google Scholar 

  8. Hou, Z., Silva, A., Leitao, D., Ferreira, R., Cardoso, S., Freitas, P.: Micromagnetic and magneto-transport simulations of nanodevices based on mgo tunnel junctions for memory and sensing applications. Phys. B Condens. Matter 435, 163–167 (2014)

    Article  ADS  Google Scholar 

  9. Leitao, D.C., Silva, A.V., Paz, E., Ferreira, R., Cardoso, S., Freitas, P.P.: Magnetoresistive nanosensors: controlling magnetism at the nanoscale. Nanotechnology 27(4), 045501 (2015)

    Article  ADS  Google Scholar 

  10. Ennen, I., Kappe, D., Rempel, T., Glenske, C., Hütten, A.: Giant magnetoresistance: Basic concepts, microstructure, magnetic interactions and applications. Sensors 16(6), 904 (2016)

    Article  Google Scholar 

  11. Sepehri-Amin, H., Ohkubo, T., Nagashima, S., Yano, M., Shoji, T., Kato, A., Schrefl, T., Hono, K.: High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the nd–cu grain boundary diffusion process. Acta Mater. 61(17), 6622–6634 (2013)

    Article  ADS  Google Scholar 

  12. Bance, S., Oezelt, H., Schrefl, T., Winklhofer, M., Hrkac, G., Zimanyi, G., Gutfleisch, O., Evans, R., Chantrell, R., Shoji, T., Yano, M., Sakuma, N., Kato, A., Manabe, A.: High energy product in Battenberg structured magnets. Appl. Phys. Lett. 105(19), 192401 (2014)

    Article  ADS  Google Scholar 

  13. Fukunaga, H., Hori, R., Nakano, M., Yanai, T., Kato, R., Nakazawa, Y.: Computer simulation of coercivity improvement due to microstructural refinement. J. Appl. Phys. 117(17), 17A729 (2015)

    Google Scholar 

  14. Evans, R.F., Fan, W.J., Chureemart, P., Ostler, T.A., Ellis, M.O., Chantrell, R.W.: Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26(10), 103202 (2014)

    Article  ADS  Google Scholar 

  15. Brown Jr, W.F.: Micromagnetics, domains, and resonance. J. Appl. Phys. 30(4), S62–S69 (1959)

    Article  ADS  Google Scholar 

  16. Brown, W.F.: Micromagnetics. Interscience Publishers, New York/London (1963)

    MATH  Google Scholar 

  17. Heisenberg, W.: Zur Theorie des Ferromagnetismus. Zeitschrift für Physik 49(9), 619–636 (1928)

    Article  ADS  MATH  Google Scholar 

  18. Vleck, V.: The Theory of Electric and Magnetic Susceptibilities. Oxford University Press, London (1932)

    MATH  Google Scholar 

  19. Harashima, Y., Terakura, K., Kino, H., Ishibashi, S., Miyake, T.: Nitrogen as the best interstitial dopant among x = B, C, N, O, and F for strong permanent magnet NdFe11TiX: First-principles study. Phys. Rev. B 92, 184426 (2015)

    Article  ADS  Google Scholar 

  20. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, 2nd edn. IEEE Press, Hoboken (2009)

    Google Scholar 

  21. Kneller, E.: Ferromagnetismus. Springer, Berlin/Göttingen/Heidelberg (1962)

    Book  MATH  Google Scholar 

  22. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)

    MATH  Google Scholar 

  23. Talagala, P., Fodor, P., Haddad, D., Naik, R., Wenger, L., Vaishnava, P., Naik, V.: Determination of magnetic exchange stiffness and surface anisotropy constants in epitaxial Ni1−xCox(001) films. Phys. Rev. B 66(14), 144426 (2002)

    Article  ADS  Google Scholar 

  24. Eyrich, C., Zamani, A., Huttema, W., Arora, M., Harrison, D., Rashidi, F., Broun, D., Heinrich, B., Mryasov, O., Ahlberg, M., Karis, O., Jönsson, P., From, M., Zhu, X., Girt, E.: Effects of substitution on the exchange stiffness and magnetization of co films. Phys. Rev. B 90(23), 235408 (2014)

    Article  ADS  Google Scholar 

  25. Weissmüller, J., McMichael, R.D., Michels, A., Shull, R.: Small-angle neutron scattering by the magnetic microstructure of nanocrystalline ferromagnets near saturation. J. Res. Natl. Inst. Stand. Technol. 104(3), 261 (1999)

    Article  Google Scholar 

  26. Ono, K., Inami, N., Saito, K., Takeichi, Y., Yano, M., Shoji, T., Manabe, A., Kato, A., Kaneko, Y., Kawana, D., Yokoo, T., Itoh, S.: Observation of spin-wave dispersion in nd-fe-b magnets using neutron brillouin scattering. J. Appl. Phys. 115(17), 17A714 (2014)

    Google Scholar 

  27. Smith, N., Markham, D., LaTourette, D.: Magnetoresistive measurement of the exchange constant in varied-thickness permalloy films. J. Appl. Phys. 65(11), 4362–4365 (1989)

    Article  ADS  Google Scholar 

  28. Livingston, J., McConnell, M.: Domain-wall energy in cobalt-rare-earth compounds. J. Appl. Phys. 43(11), 4756–4762 (1972)

    Article  ADS  Google Scholar 

  29. Livingston, J.: Magnetic domains in sintered Fe-Nd-B magnets. J. Appl. Phys. 57(8), 4137–4139 (1985)

    Article  ADS  Google Scholar 

  30. Newnham, S., Jakubovics, J., Daykin, A.: Domain structure of thin NdFeB foils. J. Magn. Magn. Mater. 157, 39–40 (1996)

    Article  ADS  Google Scholar 

  31. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Singapore (1999)

    MATH  Google Scholar 

  32. Steele, C.: Iterative algorithm for magnetostatic problems with saturable media. IEEE Trans. Magn. 18(2), 393–396 (1982)

    Article  ADS  Google Scholar 

  33. Senanan, K., Victora, R.: Effect of medium permeability on the perpendicular recording process. Appl. Phys. Lett. 81(20), 3822–3824 (2002)

    Article  ADS  Google Scholar 

  34. Brown Jr, W.F.: Domains, micromagnetics, and beyond: Reminiscences and assessments. J. Appl. Phys. 49(3), 1937–1942 (1978)

    Article  ADS  Google Scholar 

  35. LaBonte, A.: Two-dimensional bloch-type domain walls in ferromagnetic films. J. Appl. Phys. 40(6), 2450–2458 (1969)

    Article  ADS  Google Scholar 

  36. Schabes, M., Aharoni, A.: Magnetostatic interaction fields for a three-dimensional array of ferromagnetic cubes. IEEE Trans. Magn. 23(6), 3882–3888 (1987)

    Article  ADS  Google Scholar 

  37. Aharoni, A.: Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83(6), 3432–3434 (1998)

    Article  ADS  Google Scholar 

  38. Dittrich, R., Scholz, W.: Calculator for magnetostatic energy and demagnetizing factor. http://www.magpar.net/static/magpar/doc/html/demagcalc.html (2016) Accessed 11 Aug 2016

  39. Sato, M., Ishii, Y.: Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder. J. Appl. Phys. 66(2), 983–985 (1989)

    Article  ADS  Google Scholar 

  40. Asselin, P., Thiele, A.: On the field lagrangians in micromagnetics. IEEE Trans. Magn. 22(6), 1876–1880 (1986)

    Article  ADS  Google Scholar 

  41. Donahue, M., Porter, D., McMichael, R., Eicke, J.: Behavior of μmag standard problem no. 2 in the small particle limit. J. Appl. Phys. 87, 5520–5522 (2000)

    Google Scholar 

  42. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: The design and verification of MuMax3. AIP Adv. 4(10), 107133 (2014)

    Article  ADS  Google Scholar 

  43. Bisotti, M.-A., Cortés-Ortuño, D., Pepper, R., Wang, W., Beg, M., Kluyver, T., Fangohr, H.: Fidimag–a finite difference atomistic and micromagnetic simulation package. J. Open Res. Softw. 6, 1 (2018)

    Article  Google Scholar 

  44. Abert, C., Selke, G., Kruger, B., Drews, A.: A fast finite-difference method for micromagnetics using the magnetic scalar potential. IEEE Trans. Magn. 48(3), 1105–1109 (2012)

    Article  ADS  Google Scholar 

  45. Fu, S., Cui, W., Hu, M., Chang, R., Donahue, M.J., Lomakin, V.: Finite-difference micromagnetic solvers with the object-oriented micromagnetic framework on graphics processing units. IEEE Trans. Magn. 52(4), 1–9 (2016)

    Article  Google Scholar 

  46. Scholz, W., Fidler, J., Schrefl, T., Suess, D., Dittrich, R., Forster, H., Tsiantos, V.: Scalable parallel micromagnetic solvers for magnetic nanostructures. Comput. Mater. Sci. 28(2), 366–383 (2003)

    Article  Google Scholar 

  47. Fischbacher, T., Franchin, M., Bordignon, G., Fangohr, H.: A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 43(6), 2896–2898 (2007)

    Article  ADS  Google Scholar 

  48. Abert, C., Exl, L., Bruckner, F., Drews, A., Suess, D.: magnum.fe: A micromagnetic finite-element simulation code based on FEniCS. J. Magn. Magn. Mater. 345, 29–35 (2013)

    Google Scholar 

  49. Chang, R., Li, S., Lubarda, M., Livshitz, B., Lomakin, V.: Fastmag: Fast micromagnetic simulator for complex magnetic structures. J. Appl. Phys. 109(7), 07D358 (2011)

    Google Scholar 

  50. Forster, H., Schrefl, T., Dittrich, R., Scholz, W., Fidler, J.: Fast boundary methods for magnetostatic interactions in micromagnetics. IEEE Trans. Magn. 39(5), 2513–2515 (2003)

    Article  ADS  Google Scholar 

  51. Cowburn, R., Welland, M.: Micromagnetics of the single-domain state of square ferromagnetic nanostructures. Phys. Rev. B 58(14), 9217 (1998)

    Article  ADS  Google Scholar 

  52. Goll, D., Schütz, G., Kronmüller, H.: Critical thickness for high-remanent single-domain configurations in square ferromagnetic thin platelets. Phys. Rev. B 67(9), 094414 (2003)

    Article  ADS  Google Scholar 

  53. James, P., Eriksson, O., Hjortstam, O., Johansson, B., Nordström, L.: Calculated trends of the magnetostriction coefficient of 3D alloys from first principles. Appl. Phys. Lett. 76(7), 915–917 (2000)

    Article  ADS  Google Scholar 

  54. Hubert, A., Schäfer, R.: Magnetic Domains, corrected, 3rd printing ed. Springer, Berlin/New York (2009)

    Google Scholar 

  55. Rand, O., Rovenski, V.: Analytical Methods in Anisotropic Elasticity. Birkhäuser, Boston/Basel/Berlin (2005)

    MATH  Google Scholar 

  56. Shu, Y., Lin, M., Wu, K.: Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mech. Mater. 36(10), 975–997 (2004)

    Article  Google Scholar 

  57. Peng, R.-C., Hu, J.-M., Momeni, K., Wang, J.-J., Chen, L.-Q., Nan, C.-W.: Fast 180o magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage. Sci. Rep. 6, 27561 (2016)

    Article  ADS  Google Scholar 

  58. Zhao, Z., Jamali, M., D’Souza, N., Zhang, D., Bandyopadhyay, S., Atulasimha, J., Wang, J.-P.: Giant voltage manipulation of mgo-based magnetic tunnel junctions via localized anisotropic strain: A potential pathway to ultra-energy-efficient memory technology. Appl. Phys. Lett. 109(9), 092403 (2016)

    Article  ADS  Google Scholar 

  59. Stoner, E.C., Wohlfarth, E.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 240(826), 599–642 (1948)

    Article  ADS  MATH  Google Scholar 

  60. Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter 15(20), R841 (2003)

    Article  ADS  Google Scholar 

  61. Rave, W., Ramstöck, K., Hubert, A.: Corners and nucleation in micromagnetics. J. Magn. Magn. Mater. 183(3), 329–333 (1998)

    Article  ADS  Google Scholar 

  62. Schabes, M.E., Bertram, H.N.: Magnetization processes in ferromagnetic cubes. J. Appl. Phys. 64(3), 1347–1357 (1988)

    Article  ADS  Google Scholar 

  63. Schmidts, H., Kronmüller, H.: Size dependence of the nucleation field of rectangular ferromagnetic parallelepipeds. J. Magn. Magn. Mater. 94(1), 220–234 (1991)

    Article  ADS  Google Scholar 

  64. Bance, S., Seebacher, B., Schrefl, T., Exl, L., Winklhofer, M., Hrkac, G., Zimanyi, G., Shoji, T., Yano, M., Sakuma, N., Ito, M., Kato, A., Manabe, A.: Grain-size dependent demagnetizing factors in permanent magnets. J. Appl. Phys. 116(23), 233903 (2014)

    Article  ADS  Google Scholar 

  65. Thielsch, J., Suess, D., Schultz, L., Gutfleisch, O.: Dependence of coercivity on length ratios in sub-micron Nd2Fe14B particles with rectangular prism shape. J. Appl. Phys. 114(22), 223909 (2013)

    Article  ADS  Google Scholar 

  66. Crew, D., Girt, E., Suess, D., Schrefl, T., Krishnan, K., Thomas, G., Guilot, M.: Magnetic interactions and reversal behavior of Nd2Fe14B particles diluted in a Nd matrix. Phys. Rev. B 66(18), 184418 (2002)

    Article  ADS  Google Scholar 

  67. Donahue, M., McMichael, R.: Exchange energy representations in computational micromagnetics. Phys. B Condens. Matter 233(4), 272–278 (1997)

    Article  ADS  Google Scholar 

  68. Schäfer, R.: Domains in extremely soft magnetic materials. J. Magn. Magn. Mater. 215, 652–663 (2000)

    Article  ADS  Google Scholar 

  69. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience Publishers, New York (1953)

    MATH  Google Scholar 

  70. Komzsik, L.: Applied Calculus of Variations for Engineers. CRC Press, Boca Raton/London/New York (2009)

    MATH  Google Scholar 

  71. Victora, R.: Micromagnetic predictions for magnetization reversal in coni films. J. Appl. Phys. 62(10), 4220–4225 (1987)

    Article  ADS  Google Scholar 

  72. Cohen, R., Lin, S.-Y., Luskin, M.: Relaxation and gradient methods for molecular orientation in liquid crystals. Comput. Phys. Commun. 53(1–3), 455–465 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  73. Exl, L., Bance, S., Reichel, F., Schrefl, T., Stimming, H.P., Mauser, N.J.: LaBonte’s method revisited: An effective steepest descent method for micromagnetic energy minimization. J. Appl. Phys. 115(17), 17D118 (2014)

    Google Scholar 

  74. Landau, L.D., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8(153), 101–114 (1935)

    MATH  Google Scholar 

  75. Gilbert, T.: A lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  76. Miltat, J., Albuquerque, G., Thiaville, A.: An introduction to micromagnetics in the dynamic regime. In: Hillebrands, B., Ounadjela, K. (eds.) Spin Dynamics in Confined Magnetic Structures, pp. 1–34. Springer, Berlin (2002)

    Google Scholar 

  77. Coey, M.D.J.: Magnetism and Magnetic Materials:. Cambridge University Press, Cambridge 001 (2001)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the Austrian Science Fund (FWF) under grant No. F4112 SFB ViCoM and grant No. P31140-N32 for financial support. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Exl .

Editor information

Editors and Affiliations

7 Appendix

7 Appendix

The intrinsic material properties listed in Table 1 are taken from [77]. The exchange lengths and the wall parameter are calculated as follows: \(l_{\text{ex}}=\sqrt {A/(\mu _0M^2_{\text{s}})}\), \(\delta _0 = \sqrt {A/|K_{1}|}\).

Table 1 Intrinsic magnetic properties and characteristic lengths of selected magnetic materials

The examples given in Figs. 3 to 7 were computed using the micromagnetic simulation environment FIDIMAG [43]. FIDIMAG solves finite difference micromagnetic problems using a Python interface. The reader is encouraged to run computer experiments for further exploration of micromagnetism. In the following we illustrate the use of the Python interface for simulating the switching dynamics of a magnetic nano-element (see Fig. 7). The function relax_system computes the initial magnetic state. The function apply_field computes the response of the magnetization under the influence of a time varying external field.

 import numpy as np  from fidimag . micro import Sim  from fidimag .common import CuboidMesh  from fidimag . micro import UniformExchange ,  Demag  from fidimag . micro import TimeZeeman  mu0  =  4 * np . pi * 1e −7  A     =   1.0 e−11  Ms    =   1./mu0  def relax_system (mesh) :      sim  =  Sim(mesh ,  name = ’ relax ’ )      sim . driver . set_tols ( r t o l=1e −10,   atol =1 e −10)      sim . driver . alpha  =   0.5      sim . driver .gamma  =  2.211 e5      sim .Ms   =   Ms      sim . do_precession  =  False      sim . set_m ((0.577350269 , 0.577350269 , 0.577350269) )      sim . add( UniformExchange (A = A) )      sim . add(Demag() )      sim . relax ()      np . save ( ’m0. npy ’ , sim . spin )  def  apply_field (mesh) :      sim  =  Sim(mesh ,  name = ’dyn ’ )      sim . driver . set_tols ( r t o l=1e −10,   atol =1 e −10)      sim . driver . alpha  =  0.02      sim . driver .gamma  =  2.211 e5      sim .Ms   =   Ms      sim . set_m (np . load ( ’m0. npy ’ ) )      sim . add( UniformExchange (A = A) )      sim . add(Demag() )      sigma  =   0.1 e−9      def gaussian_fun ( t ) :          return np . exp (−0.5   *   (( t −3* sigma )   /   sigma ) **2)       mT   =  0.001 / mu0      zeeman  =  TimeZeeman ([−100   *   mT ,   −100   *   mT ,   −100   *   mT ] ,   time_fun = gaussian_fun ,   name = ’H’ )      sim . add(zeeman ,   save_field= True)      sim . relax ( dt=1.e −12, max_steps =10000)   if  __name__  ==   ’__main__ ’ :      mesh  =  CuboidMesh(nx=50, ny=10, nz=1, dx=2, dy=2, dz=2,  unit_length=1e −9)      relax_system (mesh)      apply_field (mesh)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Exl, L., Suess, D., Schrefl, T. (2021). Micromagnetism. In: Coey, M., Parkin, S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63101-7_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63101-7_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63101-7

  • Online ISBN: 978-3-030-63101-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics