Skip to main content

The Artistry of Bacterial Colonies and the Antibiotic Crisis

  • Conference paper
  • First Online:
Coherent Structures in Complex Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 567))

Abstract

Since the beginning of massive usage of antibiotics during World War II we have witnessed a dramatic evolutionary event - the emergence of multiple drug resistant bacteria. The bacteria are capable of developing antibiotic resistance at a higher rate than scientists develop new drugs [1], and references therein. See also the UN’s World Health Report 1996]. We seem to be loosing a crucial battle on our health. To reverse this course of events, we have to “outsmart” the bacteria by taking new avenues of study which will lead to the development of novel strategies to fight them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. F. Amáblie-Cueva, M. Cárdenas-García, and M. Ludgar. Antibiotic resistance. Am. Sci., 83:320–329, 1995.

    Google Scholar 

  2. P. Radetsky. Last days of the wonder drugs. Discover, 19, 1998.

    Google Scholar 

  3. S. B. Levy. The challenge of antibiotic resistance. Sci. Am., March, 1998.

    Google Scholar 

  4. R. V. Miller. Bacterial gene swapping in nature. Sci. Am., 278(1), 1998.

    Google Scholar 

  5. J. A. Shapiro. Natural genetic engineering in evolution. Genetica, 86:99–111, 1992.

    Article  Google Scholar 

  6. R. Losick and D. Kaiser. Why and how bacteria communicate. Sci. Am., February, 1997.

    Google Scholar 

  7. S. Baron, editor. Medical Microbiology. The University of Texas Medical Branch at Galveston, fourth edition, 1996.

    Google Scholar 

  8. J. A. Shapiro. Bacteria as multicellular organisms. Sci. Am., 258(6):62–69, 1988.

    Article  Google Scholar 

  9. D. Kaiser and R. Losick. How and why bacteria talk to each other. Cell, 73:873–887, 1993.

    Article  Google Scholar 

  10. L.J. Shimkets and M. Dworkin. Myxobacterial multicellularity. In J. A. Shapiro and M. Dworkin, editors, Bacteria as Multicellular Organisms. Oxford University Press, New-York, 1997.

    Google Scholar 

  11. E. Ben-Jacob. From snow.ake formation to the growth of bacterial colonies. part II: Cooperative formation of complex colonial patterns. Contemp. Phys., 38:205–241, 1997.

    Article  ADS  Google Scholar 

  12. E. O. Budrene and H. C. Berg. Complex patterns formed by motile cells of esherichia coli. Nature, 349:630–633, 1991.

    Article  ADS  Google Scholar 

  13. Y. Blat and M. Eisenbach. Tar-dependent and-independent pattern formation by Salmonella typhimurium. J. Bac., 177(7):1683–1691, 1995.

    Google Scholar 

  14. E. O. Budrene and H. C. Berg. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature, 376:49–53, 1995.

    Article  ADS  Google Scholar 

  15. M. A. Marahiel, M. M. Nakano, and P. Zuber. Regulation of peptide antibiotic production in bacillus. Mol. Microbiol., 7:631–636, 1993.

    Google Scholar 

  16. J. D. Desai and I. M. Banat. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev., 61:47–64, 1997.

    Google Scholar 

  17. E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen, A. Czirók, and T. Vicsek. Generic modeling of cooperative growth patterns in bacterial colonies. Nature, 368:46–49, 1994.

    Article  ADS  Google Scholar 

  18. E. Ben-Jacob, O. Shochet, I. Cohen, A. Tenenbaum, A. Czirók, and T. Vicsek. Cooperative strategies in formation of complex bacterial patterns. Fractals, 3:849–868, 1995.

    Article  MATH  Google Scholar 

  19. I. Cohen, A. Czirók, and E. Ben-Jacob. Chemotactic-based adaptive self organization during colonial development. Physica A, 233:678–698, 1996.

    Article  ADS  Google Scholar 

  20. E. Ben-Jacob, I. Cohen, A. Czirók, T. Vicsek, and D. L. Gutnick. Chemomodulation of cellular movement and collective formation of vortices by swarming bacteria and colonial development. Physica A, 238:181–197, 1997.

    Article  ADS  Google Scholar 

  21. E. Ben-Jacob, I. Cohen, O. Shochet, I. Aronson, H. Levine, and L. Tsimering. Complex bacterial patterns. Nature, 373:566–567, 1995.

    Article  ADS  Google Scholar 

  22. L. Tsimring, H. Levine, I. Aranson, E. Ben-Jacob, I. Cohen, O. Shochet, and W. N. Reynolds. Aggregation patterns in stressed bacteria. Phys. Rev. Lett., 75:1859–1862, 1995.

    Article  ADS  Google Scholar 

  23. E. Ben-Jacob, I. Cohen, O. Shochet, A. Czirók, and T. Vicsek. Cooperative formation of chiral patterns during growth of bacterial colonies. Phys. Rev. Lett., 75(15):2899–2902, 1995.

    Article  ADS  Google Scholar 

  24. E. Ben-Jacob, I. Cohen, I. Golding, D.L. Gutnick, M. Tcherpakov, D. Helbing, and I.G. Ron. Bacterial cooperative organization under antibiotic stress. Physica A, 282(1–2):247–282, 2000.

    Article  ADS  Google Scholar 

  25. I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob. Studies of bacterial branching growth using reaction-di.usion models of colonial development. Physica A, 260(3–4):510–554, 1998.

    Article  Google Scholar 

  26. E. Ben-Jacob, H. Shmueli, O. Shochet, and A. Tenenbaum. Adaptive selforganization during growth of bacterial colonies. Physica A, 187:378–424, 1992.

    Article  ADS  Google Scholar 

  27. E. Ben-Jacob, A. Tenenbaum, O. Shochet, and O. Avidan. Holotransformations of bacterial colonies and genome cybernetics. Physica A, 202:1–47, 1994.

    Article  ADS  Google Scholar 

  28. M. Tcherpakov, E. Ben-Jacob, and D. L. Gutnick. Paenibacillus dendritiformis sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster. Int. J. Syst. Bacteriol., 49:239–246, 1999.

    Article  Google Scholar 

  29. M. Tcherpakov, E. Ben-Jacob, I. Cohen, and D. L. Gutnick. Paenibacillus vortex sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster. submitted to Int. J. Syst. Bacteriol.

    Google Scholar 

  30. E. Ben-Jacob, I. Cohen, and D. Gutnick. Cooperative organization of bacterial colonies: From genotype to morphotype. Annu. Rev. Microbiol., 52:779–806, 1998.

    Article  Google Scholar 

  31. E. Ben-Jacob, O. Shochet, A. Tenenbaum, I. Cohen, A. Czirók, and T. Vicsek. Communication, regulation and control during complex patterning of bacterial colonies. Fractals, 2(1):15–44, 1994.

    Article  Google Scholar 

  32. E. Ben-Jacob, I. Cohen, I. Golding, and Y. Kozlovsky. Modeling branching and chiral colonial patterning of lubricating bacteria. In Proceedings of 1998 IMA workshop: Pattern Formation and Morphogenesis. Springer-Verlag, Berlin, 1999. (in press).

    Google Scholar 

  33. E. Ben-Jacob, O. Shochet, A. Tenenbaum, and O. Avidan. Evolution of complexity during growth of bacterial colonies. In P. E. Cladis and P. Pal.y-Muhoray, editors, Spatio-Temporal Patterns in Nonequilibrium Complex Systems, Santa-Fe Institute studies in the sciences of complexity, pages 619–634. Addison-Weseley Publishing Company, 1995.

    Google Scholar 

  34. A. Dukler. Isolation and characterization of bacteria growing in patterns on the surface of solid agar. Senior project under the supervision of D. Gutnick., Tel-Aviv University, 1993.

    Google Scholar 

  35. M. Mimura, H. Sakaguchi, and M. Matsushita. A reaction-di.usion approach to bacterial colony formation. preprint, 1997.

    Google Scholar 

  36. M. Matsushita, J. Wakita, H. Itoh, I. Rafols, T. Matsuyama, H. Sakaguchi, and M. Mimura. Interface growth and pattern formation in bacterial colonies. Physica A, 249:517–524, 1998.

    Article  Google Scholar 

  37. K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, and N. Shigesada. Modeling spatio-temporal patterns created by bacillus-subtilis. J. Theor. Biol., 188:177–185, 1997.

    Article  Google Scholar 

  38. S. Kitsunezaki. Interface dynamics for bacterial colony formation. J. Phys. Soc. Jpn, 66(5):1544–1550, 1997.

    Article  MATH  ADS  Google Scholar 

  39. Y. Kozlovsky, I. Cohen, I. Golding, and E. Ben-Jacob. Lubricating bacteria model for branching growth of bacterial colonies. Phys. Rev. E, 59(6):7025–7035, 1999.

    Article  ADS  Google Scholar 

  40. I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, and I. G. Ron. Continuous and discrete models of cooperation in complex bacterial colonies. Fractals, 7:235–247, 1999.

    Article  Google Scholar 

  41. A. M. Lacasta, I. R. Cantalapiedra, C. E. Auguet, A. Peñaranda, and L. Ramírez-Piscina. Modeling of spatiotemporal patterns in bacterial colonies. Phys. Rev. E, 59(6):7036–7041, 1999.

    Article  ADS  Google Scholar 

  42. I. Cohen. Mathematical modeling and analysis of pattern formation and colonial organization in bacterial colonies, 1997. M.Sc. thesis, Tel-Aviv University, ISRAEL.

    Google Scholar 

  43. J. D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  44. J. A. Shapiro and D. Trubatch. Sequential events in bacterial colony morphogenesis. Physica D, 49:214–223, 1991.

    Article  ADS  Google Scholar 

  45. A. Grondin, H. C. Jarell, and L. R. Berube. Discontinuous expansion linked to sector formation in Pseudomonas aeruginosa colonies. Archives of Microbiology, 172:59–62, 1999.

    Article  Google Scholar 

  46. I. Golding, I. Cohen, and E. Ben-Jacob. Studies of sector formation in expanding bacterial colonies. Europhys. Lett., 48(5):587–593, 1999.

    Article  ADS  Google Scholar 

  47. J. Cairns, J. Overbaugh, and S. Miller. The origin of mutants. Nature, 335:142–145, 1988.

    Article  ADS  Google Scholar 

  48. E. Ben-Jacob. From snow.ake formation to the growth of bacterial colonies. part I: Di.usive patterning in non-living systems. Contemp. Phys., 34:247–273, 1993.

    Article  ADS  Google Scholar 

  49. M. Eisenbach. Functions of the flagellar modes of rotation in bacterial motility and chemotaxis. Molec. Microbiol., 4(2):161–167, 1990.

    Article  Google Scholar 

  50. J. B. Stock, A. M. Stock, and M. Mottonen. Signal transduction in bacteria. Nature, 344:395–400, 1990.

    Article  ADS  Google Scholar 

  51. C. H. Shaw. Swimming against the tide: chemotaxis in agrobacterium. BioEssays, 13(1):25–29, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golding, I., Ben-Jacob, E. (2001). The Artistry of Bacterial Colonies and the Antibiotic Crisis. In: Reguera, D., Rubí, J.M., Bonilla, L.L. (eds) Coherent Structures in Complex Systems. Lecture Notes in Physics, vol 567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44698-2_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44698-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41705-7

  • Online ISBN: 978-3-540-44698-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics