Skip to main content

A Binocular Stereo Algorithm for Log-Polar Foveated Systems

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2525))

Included in the following conference series:

Abstract

Foveation and stereopsis are important features on active vision systems. The former provides a wide field of view and high foveal resolution with low amounts of data, while the latter contributes to the acquisition of close range depth cues. The log-polar sampling has been proposed as an approximation to the foveated representation of the primate visual system. Although the huge amount of stereo algorithms proposed in the literature for conventional imaging geometries, very few are shown to work with foveated images sampled according to the log-polar transformation. In this paper we present a method to extract dense disparity maps in real-time from a pair of log-mapped images, with direct application to active vision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Amari and M. Arbib. Competition and Cooperation in Neural Nets, pages 119–165. Systems Neuroscience. J. Metzler (ed), Academic Press, 1977.

    Google Scholar 

  2. A. Basu and K. Wiebe. Enhancing videoconferencing using spatially varying sensing. IEEE Trans. on Systems, Man, and Cybernetics, 38(2):137–148, Mar. 1998.

    Article  Google Scholar 

  3. A. Bernardino and J. Santos-Victor. Binocular visual tracking: Integration of perception and control. IEEE Trans. on Robotics and Automation, 15(6):137–146, Dec. 1999.

    Article  Google Scholar 

  4. A. Bernardino, J. Santos-Victor, and G. Sandini. Foveated active tracking with redundant 2d motion parameters. Robotics and Autonomous Systems, 39(3–4):205–221, June 2002.

    Article  Google Scholar 

  5. M. Bolduc and M. Levine. A review of biologically motivated space-variant data reduction models for robotic vision. CVIU, 69(2):170–184, Feb. 1998.

    Google Scholar 

  6. T. Boyling and J. Siebert. A fast foveated stereo matcher. In Proc. Conf. on Imaging Science Systems and Technology, pages 417–423, Las Vegas, USA, 2000.

    Google Scholar 

  7. C. Capurro, F. Panerai, and G. Sandini. Dynamic vergence using log-polar images. IJCV, 24(1):79–94, Aug. 1997.

    Article  Google Scholar 

  8. T. Wiesel D. Hubel. Stereoscopic vision in macaque monkey. cells sensitive to binocular depth in area 18 of the macaque mokey cortex. Nature, 225:41–42, 1970.

    Article  Google Scholar 

  9. G. DeAngelis and W. Newsome. Organization of disparity-selective neurons in macaque area mt. The Journal of Neuroscience, 19(4):1398–1415, 1999.

    Google Scholar 

  10. S. Mallat E. Chang and C. Yap. Wavelet foveation. J. Applied and Computational Harmonic Analysis, 9(3):312–335, Oct. 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Fischl, M. Cohen, and E. Schwartz. Rapid anisotropic diffusion using space-variant vision. IJCV, 28(3):199–212, July/Aug. 1998.

    Article  Google Scholar 

  12. G. Gambardella G. Sandini, C. Braccini and V. Tagliasco. A model of the early stages of the human visual system: Functional and topological transformation performed in the peripheral visual field. Biological Cybernetics, 44:47–58, 1982.

    Article  MATH  Google Scholar 

  13. W. Geisler and J. Perry. A real-time foveated multi-resolution system for low-bandwidth video communication. In Human Vision and Electronic Imaging, SPIE Proceedings 3299, pages 294–305, Aug. 1998.

    Google Scholar 

  14. N. Griswald, J. Lee, and C. Weiman. Binocular fusion revisited utilizing a log-polar tessellation. CVIP, pages 421–457, 1992.

    Google Scholar 

  15. E. Grosso and M. Tistarelli. Log-polar stereo for anthropomorphic robots. In Proc. 6th ECCV, pages 299–313, Dublin, Ireland, June–July 2000.

    Google Scholar 

  16. B. Horn. Robot Vision. MIT Press, McGraw Hill, 1986.

    Google Scholar 

  17. W. Klarquist and A. Bovik. Fovea: A foveated vergent active stereo system for dynamic three-dimensional scene recovery. IEEE Trans. on Robotics and Automation, 14(5):755–770, Oct. 1998.

    Article  Google Scholar 

  18. D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 194:283–287, 1976.

    Article  Google Scholar 

  19. M. Peters and A. Sowmya. A real-time variable sampling technique: Diem. In Proc. ICPR, pages 316–321, Brisbane, Australia, Aug. 1998.

    Google Scholar 

  20. S. Pollard, J. Mayhew, and J. Frisby. Pmf: A stereo correspondence algorithm using a disparity gradient limit. Perception, 14:449–470, 1985.

    Article  Google Scholar 

  21. K. Prazdny. Detection of binocular disparities. Biol. Cybern, 52:93–99, 1985.

    Article  MATH  Google Scholar 

  22. G. Metta R. Manzotti, A. Gasteratos and G. Sandini. Disparity estimation on log-polar images and vergence control. CVIU, 83:97–117, 2001.

    MATH  Google Scholar 

  23. G. Salgian and D. Ballard. Visual routines for vehicle control. In D. Kriegman, G. Hager, and S. Morse, editors, The Confluence of Vision and Control. Springer Verlag, 1998.

    Google Scholar 

  24. J. Santos-Victor and A. Bernardino. Vision-based navigation, environmental representations, and imaging geometries. In Proc. 10th Int. Symp. of Robotics Research, Victoria, Australia, Nov. 2001.

    Google Scholar 

  25. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 47(1):7–42, April–June 2002.

    Article  MATH  Google Scholar 

  26. E. Schwartz. Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics, 25:181–194, 1977.

    Article  Google Scholar 

  27. J. Siebert and D. Wilson. Foveated vergence and stereo. In Proc. of the 3rd Int. Conf. on Visual Search (TICVS), Nottingham, UK, Aug. 1992.

    Google Scholar 

  28. M. Tistarelli and G. Sandini. On the advantages of polar and log-polar mapping for direct estimation of the time-to-impact from optical flow. IEEE Trans. on PAMI, 15(8):401–411, April 1993.

    Article  Google Scholar 

  29. H. Tunley and D. Young. First order optic flow from log-polar sampled images. In Proc. ECCV, pages A:132–137, 1994.

    Google Scholar 

  30. R. Wallace, P. Ong, B. Bederson, and E. Schwartz. Space variant image processing. IJCV, 13(1):71–90, Sep. 1995.

    Article  Google Scholar 

  31. C. Weiman and G. Chaikin. Logarithmic spiral grids for image processing and display. Comp Graphics and Image Proc, 11:197–226, 1979.

    Google Scholar 

  32. R. Zabih Y. Boykov, O. Veksler. Disparity component matching for visual correspondence. In Proc. CVPR, pages 470–475, 1997.

    Google Scholar 

  33. R. Zabih Y. Boykov, O. Veksler. Markov random fields with efficient approximations. In Proc. CVPR, pages 648–655, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernardino, A., Santos-Victor, J. (2002). A Binocular Stereo Algorithm for Log-Polar Foveated Systems. In: Bülthoff, H.H., Wallraven, C., Lee, SW., Poggio, T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-36181-2_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00174-4

  • Online ISBN: 978-3-540-36181-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics