Skip to main content

Tierarzneimittel in der Umwelt: Vorkommen, Verhalten, Risiken

  • Chapter
Heil-Lasten
  • 1203 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aga DS, Goldfish R Kulshrestha P (2003). Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst 128, 658–662.

    Article  CAS  Google Scholar 

  • Anonymus (2000). Bundestierärztekammer (BTK), Arbeitsgemeinschaft der Leitenden Veterinärbeamten (ArgeVet). Leitlinien für den sorgfältigen Umgang mit antimikrobiell wirksamen Tierarzneimitteln — mit Erläuterungen. Beilage in: Deut Tierärzteblatt 48, November-Ausgabe.

    Google Scholar 

  • Anonymus (2001). FEDESA-Erhebungen. Deut Tierärzteblatt 8, 841.

    Google Scholar 

  • Arzneimittelgesetz (AMG) in der Fassung der Bekanntmachung vom 12. Dezember 2005, BGBL I, 3394.

    Google Scholar 

  • Baguer AJ, Jensen J, Krogh PH (2000). Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40, 751–757.

    Article  CAS  Google Scholar 

  • Berger K, Pertersen B, Büning-Pfaue H (1986). Persistenz von Gülle-Arzneistoffen in der Nahrungskette. Arch Lebensmittelhyg 37, 99–102.

    Google Scholar 

  • Boxall AB, Kolpin DW, Halling-Sorensen B, Tolls J (2003). Are veterinary medicines causing environmental risks? Environ Sci Technol 37, 286A–294A.

    CAS  Google Scholar 

  • Boxall AB, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004). Veterinary medicines in the environment. Rev Environ Contam Toxicol 180, 1–91.

    CAS  Google Scholar 

  • Broll S, Kietzmann M, Bettin U, Kreienbrock L (2002). Use of medicated feedingstuffs in animal production in Schleswig-Holstein. Tierärztl Praxis 30, 357–361.

    Google Scholar 

  • Burkhardt M, Stamm C, Waul C, Singer H, Muller S (2005). Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. J Environ Qual 34, 1363–1371.

    Article  CAS  Google Scholar 

  • Capone DG, Weston DP, Miller V, Shoemaker C (1996). Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145, 55–75.

    Article  CAS  Google Scholar 

  • Chander Y, Kumar K, Goyal SM, Gupta SC (2005). Antibacterial activity of soilbound antibiotics. J Environ Qual 34, 1952–1957.

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes T (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ Health Persp 107, Suppl 6, 907–938.

    CAS  Google Scholar 

  • De Liguoro M, Cibin V, Capolongo F, Halling-Sorensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52, 203–212.

    Article  CAS  Google Scholar 

  • Europäischer Rat (1990). Council Regulation (EEC) No 2377/90 of 26 June 1990 laying down a Community procedure for the establishment of maximum residue limits for veterinary medicinal products in foodstuffs of animal origin. Off J Eur Commun L224, 1–8.

    Google Scholar 

  • Europäische Union (1996). Note for guidance: environmental risk assessment of veterinary medical products other than GMO-containing and immunological products. EMEA/CVMP/055/96. EMEA, London.

    Google Scholar 

  • Forth W, Henschler D, Rummel W (1996). Allgemeine und spezielle Pharmakologie und Toxikologie. 7. Aufl., Urban & Fischer, München.

    Google Scholar 

  • Grote M, Freitag M, Betsche T (2005). Antiinfektivaeinträge aus der Tierproduktion in terrestrische und aquatische Kompartimente. Abschlussbericht des Forschungsauftrages II A 5-2038.06.06.01-B/T 2/01, Herausgeber: Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein Westfalen (MUNLV).

    Google Scholar 

  • Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002). Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952, 111–120.

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nielsen NS, Lanzky PF, Ingerslev F, Lutzhøft HCH, Jørgensen SE (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36, 357–393.

    Article  Google Scholar 

  • Halling-Sørensen B, Jacobsen AM, Jensen J, Sengelov G, Vaclavik E, Ingerslev F (2005). Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: a field-scale study in southern Denmark. Environ Toxicol Chem 24, 802–810.

    Article  Google Scholar 

  • Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau (2000). Stoffe mit pharmakologischer Wirkung einschließlich hormonell aktiver Substanzen in der Umwelt: Erster Nachweis von Tetracyclinen in güllegedüngten Böden. Deut Tierärztl Woch 107, 332–334.

    CAS  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74, 1509–1518.

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Sczesny S, Nau H, Hartung J (2003a). Antibiotics in dust originating from a pig fattening farm: a new source of health hazard for farmers? Environ Health Persp 111, 1590–1594.

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H, Nau H (2003b). Tierarzneimittelrückstände in Wirtschaftsdüngern, Boden, Sicker-und Grundwasser. In: Spurenstoffe in Gewässern: Pharmazeutische Reststoffe und endokrin wirksame Substanzen. Herausgegeben von T. Track, G. Kreysa, Wiley-VCH, Weinheim, ISBN 3-527-31017-741, 107–122.

    Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H (2003c). Ermittlung von Tierarzneimittelkonzentrationen in Gülle, Böden und Grundwasser im Rahmen des Bund /Länder Untersuchungs-programms-Arzneimittel in der Umwelt-Konzept für ein Untersuchungsprogramm-UMK-Beschluss vom 27./28. Oktober 1999. Abschlussbericht, FKZ 201 91 217, 1–67.

    Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H, Nau H (2005a). Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24, 861–868.

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H, Nau H (2005b). Tierarzneimittel in Böden — eine Grundwassergefährdung? In: Tagungsband des Fachgespräches “Arzneimittel in der Umwelt — Zu Risiken und Nebenwirkungen fragen Sie das Umweltbundesamt”, Herausgeber: Umweltbundesamt Berlin, UBA-Texte 29/05, ISSN 0722-186X, 175–184.

    Google Scholar 

  • Hartung J (1997). Staubbelastung in der Nutztierhaltung. Zentralbl Arbeitsmed 47, 65–72.

    Google Scholar 

  • Hartung J (1998). Art und Umfang der von Nutztierställen ausgehenden Luftverunreinigungen. Dtsch Tierärztl Wochenschr. 105, 213–216.

    CAS  Google Scholar 

  • Heberer T (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research papers. Toxicol Lett 131, 5–17.

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999). Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225, 109–118.

    Article  CAS  Google Scholar 

  • Höper H, Kues J, Nau H, Hamscher G (2002). Eintrag und Verbleib von Tierarzneimittelwirkstoffen in Böden. Bodenschutz, Ausgabe 4/02, 141–148.

    Google Scholar 

  • Jacobsen P, Berglind L (1988). Persistence of oxytetracycline in sediments from fish farms. Aquaculture 70, 365–370.

    Article  CAS  Google Scholar 

  • Jørgensen SE, Halling-Sørensen B (2000). Editorial: Drugs in the environment. Chemosphere 40, 691–699.

    Article  Google Scholar 

  • Kay P, Blackwell PA, Boxall AB (2005). Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere 59, 951–959.

    Article  CAS  Google Scholar 

  • Kleefisch B, Kues J (1997). Das Boden-Dauerbeobachtungsprogramm von Niedersachsen. Methodik und Ergebnisse. Arbeitshefte Boden 2, 1–122.

    Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ Sci Technol 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ, Marschner P, He JZ (2006). The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut [Epub ahead of print].

    Google Scholar 

  • Kratz W, Abbas B, Linke I (2000). Arzneimittelwirkstoffe in der Umwelt. Z Umweltchem Ökotox 12, 343–349.

    CAS  Google Scholar 

  • Kreuzig R, Holtge S, Brunotte J, Berenzen N, Wogram J, Schulz R (2005). Test-plot studies on runoff of sulfonamides from manured soils after sprinkler irrigation. Environ Toxicol Chem 24, 777–7781.

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005). Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34, 2082–2085.

    Article  CAS  Google Scholar 

  • Kümmerer K (2003). Significance of antibiotics in the environment. J Antimicrob Chemother 52, 5–7.

    Article  CAS  Google Scholar 

  • Kümmerer K (2004). Resistance in the environment. J Antimicrob Chemother 54, 311–320.

    Article  CAS  Google Scholar 

  • Kümmerer K, ed. (2004). Pharmaceuticals in the environment: Sources, fate, effects, and risks, 2nd ed. Springer, Berlin, Heidelberg, Germany.

    Google Scholar 

  • Lallai A, Mura G, Onnis N (2002). The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry. Bioresource Technol 82, 205–208.

    Article  CAS  Google Scholar 

  • Langhammer JP, Büning-Pfaue H (1989). Bewertung von Arzneistoff-Rückständen aus der Gülle im Boden. Lebensmittelchem Gerichtl Chem 43, 108.

    Google Scholar 

  • Langhammer JP, Büning-Pfaue H, Winkelmann J, Körner E (1988). Chemotherapeutika-Rückstände und Resistenzverhalten bei der Bestandsbehandlung von Sauen post partum. Tierärztl Umschau 43, 375–382.

    Google Scholar 

  • Langhammer JP, Führ F, Büning-Pfaue H (1990). Verbleib von Sulfonamid-Rückständen aus der Gülle in Boden und Nutzpflanze. Lebensmittelchem Gerichtl Chem 44, 93.

    Google Scholar 

  • Lindsey ME, Meyer TM, Thurman EM (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73, 4640–4646.

    Article  CAS  Google Scholar 

  • Löscher W, Ungemach FR, Kroker R (1999). Pharmakotherapie bei Nutztieren. Parey Verlag Berlin, 4. Auflage.

    Google Scholar 

  • Massé DI, Lua D, Massea L, Drosteb RL (2000). Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresource Technol 75, 205–211.

    Article  Google Scholar 

  • Meyer MT, Bumgarner JE, Varns JL, Daughtridge JV, Thurman EM, Hostetler KA. (2000). Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry. Sci Total Environ 248, 181–187.

    Article  CAS  Google Scholar 

  • Mitema ES, Kikuvi GM, Wegener HC, Stohr K (2001). An assessment of antimicrobial consumption in food producing animals in Kenya. J Vet Pharmacol Ther 24, 385–390.

    Article  CAS  Google Scholar 

  • Nwosu VC (2001). Antibiotic resistance with particular reference to soil microorganisms. Res Microbiol 152, 421–430.

    Article  CAS  Google Scholar 

  • Pfeifer T, Tuerk J, Bester K, Spiteller M (2002). Determination of selected sulfonamide antibiotics and trimethoprim in manure by electrospray and atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 16, 663–669.

    Article  CAS  Google Scholar 

  • Richardson ML, Bowron JM (1985). The fate of pharmaceutical chemicals in the aquatic environment. The Journal of Pharmacy and Pharmacology 37, 1–12.

    CAS  Google Scholar 

  • Samuelsen, OB, Torsvik V, Ervik A (1992). Long-range changes in oxytetracycline concentration and bacterial resistance toward oxytetracycline in a fish farm sediment after medication. Sci Total Environ 114, 25–36.

    Article  CAS  Google Scholar 

  • Schlüsener MP, Bester K Spiteller M (2003). Determination of antibiotics such as macrolides, ionophores and tiamulin in liquid manure by HPLC-MS/MS. Anal Bioanal Chem 375, 942–947.

    Google Scholar 

  • Schmitt H, Stoob K, Hamscher G, Smit E, Seinen W (2006). Tetracyclines and tetracycline resistance in agricultural soils — microcosm and field studies. Microbiol Ecol (im Druck).

    Google Scholar 

  • Schmitt H, van Beelen P, Tolls J, van Leeuwen CL (2004). Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ Sci Technol 38, 1148–1153.

    CAS  Google Scholar 

  • Sczesny S, Nau H, Hamscher G (2003). Residue analysis of tetracyclines and their metabolites in eggs and in the environment by HPLC coupled with a microbiological assay and tandem mass spectrometry. J Agric Food Chem 51, 697–703.

    Article  CAS  Google Scholar 

  • Sengelov G, Agerso Y, Halling-Sørensen B, Baloda SB, Andersen JS, Jensen LB (2003). Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28, 587–595.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2003). Pharmaceutical antibiotic compounds in soils — A review. J Plant Nutr Soil Sci 166, 145–167. Erratum in: J Plant Nutr Soil Sci 166, 546

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2005). Microbial inhibition by pharmaceutical antibiotics in different soils: dose-response relations determined with the iron(III) reduction test. Environ Toxicol Chem 24, 869–876. Erratum in: Environ Toxicol Chem 24, 1835.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005). Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere. 59, 457–465.

    Article  CAS  Google Scholar 

  • Tierschutzgesetz (TierschG) in der Fassung der Bekanntmachung vom 25. Mai 1998, BGBL I, 1105.

    Google Scholar 

  • Tolls J (2001). Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35, 3397–3406.

    Article  CAS  Google Scholar 

  • Verordnung zum Schutz landwirtschaftlicher Nutztiere und anderer zur Erzeugung tierischer Produkte gehaltener Tiere bei ihrer Haltung (Tierschutz-Nutztierhaltungsverordnung — TierSchNutztV) in der Fassung der Bekanntmachung vom 25. Oktober 2001, BGBl. I, 2758, geändert am 28. Februar 2002, BGBl. I, 1026.

    Google Scholar 

  • Winckler C, Grafe A (2000). Charakterisierung und Verwertung von Abfällen aus der Massentierhaltung unter Berücksichtigung verschiedener Böden. Herausgeber: Umweltbundesamt Berlin 2000, Forschungsbericht 297 33 911, UBA-FB000074.

    Google Scholar 

  • Winckler C, Grafe A (2001). Use of veterinary drugs in intensive animal production — evidence for persistence of tetracycline in pig slurry. J Soils Sediments 1, 66–70.

    Article  CAS  Google Scholar 

  • Yang S, Cha J, Carlson K (2004). Quantitative determination of trace concentrations of tetracycline and sulfonamide antibiotics in surface water using solid-phase extraction and liquid chromatography/ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom. 18, 2131–2145.

    Article  CAS  Google Scholar 

  • Zahn JA, Anhalt J, Boyd E (2001). Evidence for transfer of tylosin and tylosin-resistant bacteria in air from swine production facilities using sub-therapeutic concentrations of tylan in feed [Abstract]. J Anim Sci 79, 189.

    Google Scholar 

  • Zhu J, Snow DD, Cassada DA, Monson SJ, Spalding RF (2001). Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 928, 177–186.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamscher, G. (2006). Tierarzneimittel in der Umwelt: Vorkommen, Verhalten, Risiken. In: Frimmel, F.H., Müller, M.B. (eds) Heil-Lasten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33638-9_7

Download citation

Publish with us

Policies and ethics