Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 325))

  • 1269 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Abeyaratne, R. and J.K. Knowles Kinetic relations and the propagation of phase boundaries in solids. Arch. Rational Mech. Anal. 114 (1991), 119–154.

    Article  MathSciNet  Google Scholar 

  2. Abeyaratne, R. and J.K. Knowles On the propagation of maximally dissipative phase boundaries in solids. Quart. Appl. Math. 50 (1992), 149–172.

    MathSciNet  Google Scholar 

  3. Airy, G.B. Tides and waves. Encycl. Metrop. (1845), Arts. 192, 198, 308.

    Google Scholar 

  4. Alber, H.D. Local existence of weak solutions to the quasilinear wave equation for large initial values. Math. Z. 190 (1985), 249–276.

    Article  MATH  MathSciNet  Google Scholar 

  5. Alber, H.D. Global existence and large time behaviour of solutions for the equations of non-isentropic gas dynamics to initial values with unbounded support. Preprint No. 15, Sonderforschungsbereich 256, Bonn, 1988.

    Google Scholar 

  6. Alekseyevskaya, T.V. Study of the system of quasilinear equations for isotachophoresis. Adv. Appl. Math. 11 (1990), 63–107.

    Article  MATH  MathSciNet  Google Scholar 

  7. Alinhac, S. Blowup for Nonlinear Hyperbolic Equations. Boston: Birkhäuser, 1995.

    Google Scholar 

  8. Amadori, D. Initial-boundary value problems for nonlinear systems of conservation laws. NoDEA Nonlinear Differential Equations Appl. 4 (1997), 1–42.

    MATH  MathSciNet  Google Scholar 

  9. Amadori, D., Baiti, P., LeFloch, P.G. and B. Piccoli Nonclassical shocks and the Cauchy problem for nonconvex conservation laws. J. Diff. Eqs. 151 (1999), 345–372.

    Article  Google Scholar 

  10. Amadori, D. and R. M. Colombo Continuous dependence for 2 × 2 systems of conservation laws with boundary. J. Diff. Eqs. 138 (1997), 229–266.

    Article  MathSciNet  Google Scholar 

  11. Amadori, D. and R. M. Colombo Viscosity solutions and standard Riemann semigroup for conservation laws with boundary. Rend. Semin. Mat. Univ. Padova 99 (1998), 219–245.

    MathSciNet  Google Scholar 

  12. Amadori, D., Gosse L. and G. Guerra Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 162 (2002), 327–366.

    Article  MathSciNet  Google Scholar 

  13. Amadori, D. and G. Guerra Global weak solutions for systems of balance laws. Applied Math. Letters 12 (1999), 123–127.

    MathSciNet  Google Scholar 

  14. Amadori, D. and G. Guerra Global BV solutions and relaxation limit for a system of conservation laws. Proc. Roy. Soc. Edinburgh A131 (2001), 1–26.

    MathSciNet  Google Scholar 

  15. Amadori, D. and G. Guerra Uniqueness and continuous dependence for systems of balance laws with dissipation. Nonlinear Anal. 49 (2002), 987–1014.

    Article  MathSciNet  Google Scholar 

  16. Ambrosio, L., Bouchut, F. and C. DeLellis Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. Comm. PDE. 29 (2004), 1635–1651.

    Google Scholar 

  17. Ambrosio, L. and C. De Lellis Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. Int. Math. Res. Notices 41 (2003), 2205–2220.

    Google Scholar 

  18. Ambrosio, L. and C. De Lellis A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations. J. Hyperbolic Diff. Eqs. 1 (2004), 813–826.

    Google Scholar 

  19. Ambrosio, L., Fusco, N. and D. Pallara Functions of Bounded Variation and Free Discontinuity Problems. Oxford: Clarendon Press, 2000.

    Google Scholar 

  20. Ancona, F. and A. Marson On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36 (1998), 290–312.

    Article  MathSciNet  Google Scholar 

  21. Ancona, F. and A. Marson Scalar nonlinear conservation laws with integrable boundary data. Nonlinear Anal. 35 (1999), 687–710.

    Article  MathSciNet  Google Scholar 

  22. Ancona, F. and A. Marson A wavefront tracking algorithm for N × N nongenuinely nonlinear conservation laws. J. Diff. Eqs. 177 (2001), 454–493.

    Article  MathSciNet  Google Scholar 

  23. Ancona, F. and A. Marson Basic estimates for a front tracking algorithm for general 2 × 2 conservation laws. Math. Models Methods Appl. Sci. 12 (2002), 155–182.

    Article  MathSciNet  Google Scholar 

  24. Ancona, F. and A. Marson Well-posedness for general 2 × 2 systems of conservation laws. Memoirs AMS 169 (2004), No. 801.

    Google Scholar 

  25. Ancona, F. and A. Marson A front tracking algorithm for general nonlinear hyperbolic systems. (In preparation).

    Google Scholar 

  26. Andrianov, N. and G. Warnecke On the solution to the Riemann problem for the compressible duct flow. SIAM J. Appl. Math. 64 (2004), 878–901.

    Article  MathSciNet  Google Scholar 

  27. Andrianov, N. and G. Warnecke The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 195 (2004), 434–464.

    Article  MathSciNet  Google Scholar 

  28. Antman, S.S. The Theory of Rods. Handbuch der Physik, Vol. VIa/2. Berlin: Springer, 1972.

    Google Scholar 

  29. Antman, S.S. The equations for the large vibrations of strings. Amer. Math. Monthly 87 (1980), 359–370.

    MATH  MathSciNet  Google Scholar 

  30. Antman, S.S. Nonlinear Problems of Elasticity. (Second Edition). New York: Springer, 2004.

    Google Scholar 

  31. Antman, S.S. and Tai-Ping Liu Traveling waves in hyperelastic rods. Quart. Appl. Math. 36 (1978), 377–399.

    MathSciNet  Google Scholar 

  32. Antman, S.S. and R. Malek-Madani Traveling waves in nonlinearly viscoelastic media and shock structure in elastic media. Quart. Appl. Math. 46 (1988), 77–93.

    MathSciNet  Google Scholar 

  33. Anzellotti, G. Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983), 293–318.

    Article  MATH  MathSciNet  Google Scholar 

  34. Asakura, F. Asymptotic stability of solutions with a single strong shock wave for hyperbolic systems of conservation laws. Japan J. Indust. Appl. Math. 11 (1994), 225–244.

    MATH  MathSciNet  Google Scholar 

  35. Asakura, F. Large time stability of the Maxwell states. Methods Appl. Anal. 6 (1999), 477–503.

    MATH  MathSciNet  Google Scholar 

  36. Aw, A. and M. Rascle Resurrection of second order models of traffic flow. SIAM J. Appl. Math. 60 (2000), 916–938.

    Article  MathSciNet  Google Scholar 

  37. Azevedo, A.V. and D. Marchesin Multiple viscous solutions for systems of conservation laws. Trans. AMS 347 (1995), 3061–3077.

    MathSciNet  Google Scholar 

  38. Azevedo, A.V., Marchesin, D., Plohr, B.J. and K. Zumbrun Nonuniqueness of solutions of Riemann problems. ZAMP 47 (1996), 977–998.

    Article  MathSciNet  Google Scholar 

  39. Azevedo, A.V., Marchesin, D., Plohr, B.J. and K. Zumbrun Bifurcation of nonclassical viscous shock profiles from the constant state. Comm. Math. Phys. 202 (1999), 267–290.

    Article  MathSciNet  Google Scholar 

  40. Bäcker, M. and K. Dressler A kinetic method for strictly nonlinear scalar conservation laws. ZAMP 42 (1991), 243–256.

    Google Scholar 

  41. Baiti, P. and A. Bressan The semigroup generated by a Temple class system with large data. Diff. Integral Eqs. 10 (1997), 401–418.

    MathSciNet  Google Scholar 

  42. Baiti, P. and A. Bressan Lower semicontinuity of weighted path length BV. Geometrical Optics and Related Topics, pp. 31–58, ed. F. Colombini and N. Lerner. Basel: Birkhäuser, 1997.

    Google Scholar 

  43. Baiti, P., Bressan, A. and H.K. Jenssen Instability of traveling profiles for the Lax-Friedrichs scheme. Discrete Contin. Dynam. Systems. (To appear).

    Google Scholar 

  44. Baiti, P. and H.K. Jenssen Well-posedness for a class of 2 × 2 conservation laws with L data. J. Diff. Eqs. 140 (1997), 161–185.

    Article  MathSciNet  Google Scholar 

  45. Baiti, P. and H.K. Jenssen On the front tracking algorithm. J. Math. Anal. Appl. 217 (1998), 395–404.

    Article  MathSciNet  Google Scholar 

  46. Baiti, P. and H.K. Jenssen Blowup in L for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete Contin. Dynam. Systems 7 (2001), 837–853.

    MathSciNet  Google Scholar 

  47. Baiti, P., LeFloch, P.G. and B. Piccoli Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems. J. Diff. Eqs. 172 (2001), 59–82.

    Article  Google Scholar 

  48. Baiti, P., LeFloch, P.G. and B. Piccoli Existence theory of nonclassical entropy solutions: Scalar conservation laws. ZAMP 55 (2004), 927–945.

    Google Scholar 

  49. Bakhvarov, N. On the existence of regular solutions in the large for quasilinear hyperbolic systems. Zhur. Vychial. Mat. i Mathemat. Fiz. 10 (1970), 969–980.

    Google Scholar 

  50. Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337–403.

    MATH  Google Scholar 

  51. Ball, J.M. A version of the fundamental theorem for Young measures. Partial Differential Equations and Continuum Models of Phase Transitions, pp. 241–259, ed. M. Rascle, D. Serre and M. Slemrod. Lecture Notes in Physics No. 344. Berlin: Springer, 1989.

    Google Scholar 

  52. Ball, J.M., Currie, J.C. and P. J. Olver Null Lagrangians, weak continuity and variational problems of arbitrary order. J. Funct. Anal. 41 (1981), 135–174.

    Article  MathSciNet  Google Scholar 

  53. Ballmann, J. and R. Jeltsch (eds.) Nonlinear Hyperbolic Equations. Braunschweig: Vieweg 1989.

    Google Scholar 

  54. Ballou, D. Solutions to nonlinear hyperbolic Cauchy problems without convexity conditions. Trans. AMS 152 (1970), 441–460.

    MATH  MathSciNet  Google Scholar 

  55. Ballou, D. Weak solutions with a dense set of discontinuities. J. Diff. Eqs. 10 (1971), 270–280.

    Article  MATH  MathSciNet  Google Scholar 

  56. Bardos, C., Leroux, A.-Y. and J.-C. Nédélec First order quasilinear equations with boundary conditions. Comm. PDE 4 (1979), 1017–1034.

    Google Scholar 

  57. Barker, L.M. A computer program for shock wave analysis. Sandia National Labs. Albuquerque, 1963.

    Google Scholar 

  58. Barnes, A.P., LeFloch, P.G., Schmidt, B.G. and J.M. Stewart The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes. Class. Quant. Gravity. 21 (2004), 5043–5074.

    Google Scholar 

  59. Bateman, H. Some recent researches on the motion of fluids. Monthly Weather Review 43 (1915), 163–170.

    Article  Google Scholar 

  60. Bauman, P. and D. Phillips Large time behavior of solutions to a scalar conservation law in several space dimensions. Trans. AMS 298 (1986), 401–419.

    MathSciNet  Google Scholar 

  61. Beale, T., Kato, T. and A. Majda Remarks on the breakdown of smooth solutions for the 3-d Euler equations. Comm. Math. Phys. 94 (1984), 61–66.

    Article  MathSciNet  Google Scholar 

  62. Bedjaoui, N. and P.G. LeFloch Diffusive-dispersive traveling waves and kinetic relations. I;II;III;IV;V. J. Diff. Eqs. 178 (2002), 574–607; Proc. Royal Soc. Edinburgh 132A (2002), 545-565; Ann. Univ. Ferrara Sez. VII (N.S.) 47 (2001), 117-144; Chinese Ann. Math. 24B (2003), 17-34; Proc. Royal Soc. Edinburgh 134A (2004), 815-843.

    Article  Google Scholar 

  63. Benabdallah, A. and D. Serre Problèmes aux limites pour des systèmes hyperboliques nonlinéaires de deux equations à une dimension d’espace. C. R. Acad. Sci. Paris, Série I, 305 (1987), 677–680.

    MathSciNet  Google Scholar 

  64. Bénilan, Ph. and M.G. Crandall Regularizing effects of homogeneous evolution equations. Am. J. Math. Supplement dedicated to P. Hartman (1981), 23–39.

    Google Scholar 

  65. Bénilan, Ph. and S. Kruzkov Conservation laws with continuous flux functions. NoDEA Nonlinear Differential Equations Appl. 3 (1996), 395–419.

    MathSciNet  Google Scholar 

  66. Benzoni-Gavage, S. On a representation formula for B. Temple systems. SIAM J. Math. Anal. 27 (1996), 1503–1519.

    Article  MATH  MathSciNet  Google Scholar 

  67. Benzoni-Gavage, S. Stability of multi-dimensional phase transitions in a van der Waals fluid. Nonlinear Anal. 31 (1998), 243–263.

    MATH  MathSciNet  Google Scholar 

  68. Benzoni-Gavage, S. Stability of subsonic planar phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 150 (1999), 23–55.

    Article  MATH  MathSciNet  Google Scholar 

  69. Benzoni-Gavage, S. Nonuniqueness of phase transtions near the Maxwell line Proc. AMS 127 (1999), 1183–1190.

    MATH  MathSciNet  Google Scholar 

  70. Benzoni-Gavage, S. Linear stability of propagating phase boundaries in capillary fluids. Phys. D 155 (2001), 235–273.

    Article  MATH  MathSciNet  Google Scholar 

  71. Benzoni-Gavage, S. Stability of semi-discrete shock profiles by means of an Evans function in infinite dimensions. J. Dynam. Differential Eqs. 14 (2002), 613–674.

    MATH  MathSciNet  Google Scholar 

  72. Benzoni-Gavage, S. and R.M. Colombo An n-populations model for traffic flow. European J. Appl. Math. 14 (2003), 587–612.

    MathSciNet  Google Scholar 

  73. Benzoni-Gavage, S. and H. Freistuhler Effects of surface tension on the stability of dynamical liquid-vapor interfaces. Arch. Rational Mech. Anal. 174 (2004), 111–150.

    Article  MathSciNet  Google Scholar 

  74. Benzoni-Gavage, S., Rousset, F., Serre, D. and K. Zumbrun Generic types and transitions in hyperbolic initial-boundary-value problems. Proc. Royal Soc. Edinburgh 132A (2002), 1073–1104.

    MathSciNet  Google Scholar 

  75. Benzoni-Gavage, S. and D. Serre Compacité par compensation pour une classe de systèmes hyperboliques de p lois de conservation (p ≥ 3). Rev. Math. Iberoamericana 10 (1994), 557–579.

    MathSciNet  Google Scholar 

  76. Berthelin, F. and F. Bouchut Solution with finite energy to a BGK system relaxing to isentropic gas dynamics. Ann. Fac. Sci. Toulouse Math. 9 (2000), 605–630.

    MathSciNet  Google Scholar 

  77. Bethe, H.A. On the theory of shock waves for an arbitrary equation of state. Report No. 545 for the Office of Scientific Research and Development, Serial No. NDRC-B-237 (May 4, 1942).

    Google Scholar 

  78. Bethuel, F., Despres, B. and D. Smets Symmetrization of dissipative-dispersive traveling waves for systems of conservation laws. Physica D 200 (2005), 105–123.

    Article  MathSciNet  Google Scholar 

  79. Bianchini, S. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000), 329–350.

    MATH  MathSciNet  Google Scholar 

  80. Bianchini, S. The semigroup generated by a Temple class system with non-convex flux function. Differential Integral Eqs. 13 (2000), 1529–1550.

    MATH  MathSciNet  Google Scholar 

  81. Bianchini, S. Stability of L solutions for hyperbolic systems with coinciding shocks and rarefactions. SIAM J. Math. Anal. 33 (2001), 959–981.

    Article  MATH  MathSciNet  Google Scholar 

  82. Bianchini, S. A Glimm type functional for a special Jin-Xin relaxation model. Ann. Inst. H. Poincaré 18 (2001), 19–42.

    MATH  MathSciNet  Google Scholar 

  83. Bianchini, S. Interaction estimates and Glimm functional for general hyperbolic systems. Discrete Contin. Dynam. Systems 9 (2003), 133–166.

    MATH  MathSciNet  Google Scholar 

  84. Bianchini, S. On the Riemann problem for non-conservative hyperbolic systems. Arch. Rational Mech. Anal. 166 (2003), 1–26.

    MATH  MathSciNet  Google Scholar 

  85. Bianchini, S. BV solutions of the semidiscrete upwind scheme. Arch. Rational Mech. Anal. 167 (2003), 1–81.

    Article  MATH  MathSciNet  Google Scholar 

  86. Bianchini, S. A note on singular limits to hyperbolic systems of conservation laws. Commun. Pure Appl. Anal. 2 (2003), 51–64.

    MATH  MathSciNet  Google Scholar 

  87. Bianchini, S. Hyperbolic limit of the Jin-Xin relaxation model. (Preprint).

    Google Scholar 

  88. Bianchini, S. and F. Ancona Vanishing viscosity solutions of hyperbolic systems with possibly characteristic boundary (In preparation).

    Google Scholar 

  89. Bianchini S. and A. Bressan BV solutions for a class of viscous hyperbolic systems. Indiana U. Math. J. 49(2000), 1673–1713.

    MathSciNet  Google Scholar 

  90. Bianchini S. and A. Bressan A case study in vanishing viscosity. Discrete Contin. Dynam. Systems 7 (2001), 449–476.

    MathSciNet  Google Scholar 

  91. Bianchini S. and A. Bressan On a Lyapunov functional relating shortening curves and viscous conservation laws. Nonlinear Anal. 51 (2002), 649–662.

    Article  MathSciNet  Google Scholar 

  92. Bianchini S. and A. Bressan A center manifold technique for tracing viscous waves. Comm. Pure Appl. Anal. 1 (2002), 161–190.

    MathSciNet  Google Scholar 

  93. Bianchini S. and A. Bressan Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. 161 (2005), 1–120.

    MathSciNet  Google Scholar 

  94. Bianchini, S. and R.M. Colombo On the stability of the standard Riemann semigroup. Proc. AMS 130 (2002), 1961–1973.

    MathSciNet  Google Scholar 

  95. Bloom, F. Mathematical Problems of Classical Nonlinear Electromagnetic Theory. Harlow: Longman, 1993.

    Google Scholar 

  96. Boillat, G. La Propagation des Ondes. Paris: Gauthier-Villars, 1965.

    Google Scholar 

  97. Boillat, G. Chocs characteristiques. C. R. Acad. Sci. Paris, Série I, 274 (1972), 1018–1021.

    MATH  MathSciNet  Google Scholar 

  98. Boillat, G. Convexité et hyperbolicité en électrodynamique non linéaire. C.R. Acad. Sci. Paris 290A (1980), 259–261.

    MATH  MathSciNet  Google Scholar 

  99. Boillat, G. Involutions des systèmes conservatifs. C. R. Acad. Sci. Paris, Série I, 307 (1988), 891–894.

    MATH  MathSciNet  Google Scholar 

  100. Boillat, G. Non linear hyperbolic fields and waves. Lecture Notes in Math. No. 1640 (1996), 1–47. Berlin: Springer.

    Google Scholar 

  101. Boillat, G. and T. Ruggeri Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Rational Mech. Anal. 137 (1997), 305–320.

    Article  MathSciNet  Google Scholar 

  102. Bonnefille, M. Propagation des oscillations dans deux classes de systèmes hyperboliques (2 × 2 et 3 × 3). Comm. PDE 13 (1988), 905–925.

    MATH  MathSciNet  Google Scholar 

  103. Born, M. and L. Infeld Foundations of a new field theory. Proc. Royal Soc. London, 144A (1934), 425–451.

    Google Scholar 

  104. Bouchut, F. and F. James Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Comm. PDE 24 (1999), 2173–2190.

    MathSciNet  Google Scholar 

  105. Bouchut, F. and B. Perthame Kruzkov’s estimates for scalar conservation laws revisited. Trans. AMS, 350 (1998), 2847–2870.

    MathSciNet  Google Scholar 

  106. Brenier, Y. Resolution d’ équations d’ évolutions quasilinéaires en dimension n d’ espace à l’ aide d’ équations linéaires en dimension n + 1. J. Diff. Eqs. 50 (1983), 375–390.

    Article  MATH  MathSciNet  Google Scholar 

  107. Brenier, Y. Hydrodynamic structure of the augmented Born-Infeld equations. Arch. Rational Mech. Anal. 172 (2004), 65–91.

    Article  MATH  MathSciNet  Google Scholar 

  108. Brenier, Y. and L. Corrias A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. Henri Poincaré 15 (1998), 169–190.

    MathSciNet  Google Scholar 

  109. Brenier Y. and E. Grenier Sticky particles and scalar conservation laws. SIAM J. Num. Anal. 35 (1998), 2317–2328.

    MathSciNet  Google Scholar 

  110. Brenner, P. The Cauchy problem for the symmetric hyperbolic systems in L p . Math. Scand. 19 (1966), 27–37.

    MATH  MathSciNet  Google Scholar 

  111. Bressan, A. Contractive metrics for nonlinear hyperbolic systems. Indiana U. Math. J. 37 (1988), 409–421.

    MATH  MathSciNet  Google Scholar 

  112. Bressan, A. Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170 (1992), 414–432.

    Article  MATH  MathSciNet  Google Scholar 

  113. Bressan, A. A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves. J. Diff. Eqs. 106 (1993), 332–366.

    Article  MATH  MathSciNet  Google Scholar 

  114. Bressan, A. The unique limit of the Glimm scheme. Arch. Rational Mech. Anal. 130 (1995), 205–230.

    Article  MATH  MathSciNet  Google Scholar 

  115. Bressan, A. A locally contractive metric for systems of conservation laws. Ann. Scuola Norm. Sup. Pisa, Cl. Sci (4) 22 (1995), 109–135.

    MATH  MathSciNet  Google Scholar 

  116. Bressan, A. The semigroup approach to systems of conservation laws. Math. Contemp. 10 (1996), 21–74.

    MATH  MathSciNet  Google Scholar 

  117. Bressan, A. Hyperbolic systems of conservation laws. Rev. Mat. Complut. 12 (1999), 135–200.

    MATH  MathSciNet  Google Scholar 

  118. Bressan, A. Stability of entropy solutions to n × n conservation laws. AMS/IP Stud. Adv. Math. 15 (2000), 1–32.

    MATH  MathSciNet  Google Scholar 

  119. Bressan, A. Hyperbolic Systems of Conservation Laws. The One-dimensional Cauchy Problem. Oxford: Oxford University Press, 2000.

    Google Scholar 

  120. Bressan, A. Hyperbolic systems of conservation laws in one space dimension. Proceedings ICM 2002, Beijing, Vol I, pp. 159–178. Beijing: Higher Ed. Press, 2002.

    Google Scholar 

  121. Bressan, A. An ill-posed Cauchy problem for a hyperbolic system in two space variables. Rend. Sem. Mat. Univ. Padova 110 (2003), 103–117.

    MathSciNet  Google Scholar 

  122. Bressan, A. The front tracking method for systems of conservation laws. Handbook of Differential Equations. Evolutionary Equations. Vol. I pp. 87–168, ed. C.M. Dafermos and E. Feireisl. Amsterdam: Elsevier 2004.

    Google Scholar 

  123. Bressan, A. and G.M. Coclite On the boundary control of systems of conservation laws. SIAM J. Control Optim. 41 (2002), 607–622.

    Article  MathSciNet  Google Scholar 

  124. Bressan, A. and R. M. Colombo The semigroup generated by 2 × 2 conservation laws. Arch. Rational Mech. Anal. 133 (1995), 1–75.

    Article  MathSciNet  Google Scholar 

  125. Bressan, A. and R. M. Colombo Unique solutions of 2 × 2 conservation laws with large data. Indiana U. Math. J. 44 (1995), 677–725.

    MathSciNet  Google Scholar 

  126. Bressan, A. and R. M. Colombo Decay of positive waves in nonlinear systems of conservation laws. Ann. Scu. Norm. Sup. Pisa. IV-26 (1998), 133–160.

    MathSciNet  Google Scholar 

  127. Bressan, A., Crasta, G. and B. Piccoli Well posedness of the Cauchy problem for n × n systems of conservation laws. Memoirs AMS. 146 (2000), No. 694.

    Google Scholar 

  128. Bressan, A. and P. Goatin Oleinik type estimates and uniqueness for n × n conservation laws. J. Diff. Eqs. 156 (1999), 26–49.

    Article  MathSciNet  Google Scholar 

  129. Bressan, A. and P. Goatin Stability of L solutions of Temple Class systems. Diff. Integral Eqs. 13 (2000), 1503–1528.

    MathSciNet  Google Scholar 

  130. Bressan, A. and G. Guerra Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3 (1997), 35–58.

    MathSciNet  Google Scholar 

  131. Bressan, A. and H.K. Jenssen On the convergence of Godunov scheme for nonlinear hyperbolic systems. Chinese Ann. Math., Ser. B, 21 (2000), 269–284.

    MathSciNet  Google Scholar 

  132. Bressan, A., Jenssen, H.K. and P. Baiti An instability of the Godunov scheme. (Preprint).

    Google Scholar 

  133. Bressan, A. and P.G. LeFloch Uniqueness of weak solutions to hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 140 (1997), 301–317.

    Article  MathSciNet  Google Scholar 

  134. Bressan, A. and P.G. LeFloch Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws. Indiana U. Math. J. 48 (1999), 43–84.

    Google Scholar 

  135. Bressan, A. and M. Lewicka A uniqueness condition for hyperbolic systems of conservation laws. Discrete Contin. Dynam. Systems 6 (2000), 673–682.

    MathSciNet  Google Scholar 

  136. Bressan, A., Liu, Tai-Ping and Tong Yang L1 stability estimates for n × n conservation laws. Arch. Rational Mech. Anal. 149 (1999), 1–22.

    Article  MathSciNet  Google Scholar 

  137. Bressan, A. and A. Marson A maximum principle for optimally controlled systems of conservation laws. Rend. Sem. Mat. Univ. Padova 94 (1995), 79–94.

    MathSciNet  Google Scholar 

  138. Bressan, A. and A. Marson A variational calculus for discontinuous solutions of systems of conservation laws. Comm. PDE 20 (1995), 1491–1552.

    MathSciNet  Google Scholar 

  139. Bressan, A. and A. Marson Error bounds for a deterministic version of the Glimm scheme. Arch. Rational Mech. Anal. 142 (1998), 155–176.

    Article  MathSciNet  Google Scholar 

  140. Bressan, A. and Wen Shen BV estimates for multicomponent chromatography with relaxation. Discrete Contin. Dynam. Systems 6 (2000), 21–38.

    MathSciNet  Google Scholar 

  141. Bressan, A. and Wen Shen Uniqueness for discontinuous ODE and conservation laws. Nonlinear Anal. 34 (1998), 637–652.

    Article  MathSciNet  Google Scholar 

  142. Bressan, A. and Tong Yang On the convergence rate of vanishing viscosity approximations. Comm. Pure Appl. Math. 57 (2004), 1075–1109.

    Article  MathSciNet  Google Scholar 

  143. Bressan, A. and Tong Yang A sharp decay estimate for positive nonlinear waves. SIAM J. Math. Anal. 36 (2004), 659–677.

    MathSciNet  Google Scholar 

  144. Brio, M. and J.K. Hunter Rotationally invariant hyperbolic waves. Comm. Pure Appl. Math. 43 (1990), 1037–1053.

    MathSciNet  Google Scholar 

  145. Burger, R. and W.L. Wendland Sedimentation and suspension flows: Historical perspective and some recent developments. J. Engin. Math. 41 (2001), 101–116.

    Google Scholar 

  146. Burgers, J. Application of a model system to illustrate some points of the statistical theory of free turbulence. Neder. Akad. Wefensh. Proc. 43 (1940), 2–12.

    MATH  MathSciNet  Google Scholar 

  147. Burton, C.V. On plane and spherical sound-waves of finite amplitude. Philos. Magazine, Ser. 5, 35 (1893), 317–333.

    MATH  Google Scholar 

  148. Cabannes, H. Theoretical Magnetofluiddynamics. New York: Academic Press, 1970.

    Google Scholar 

  149. Caflisch, R.E. and B. Nicolaenko Shock profile solutions of the Boltzmann equation. Comm. Math. Phys. 86 (1982), 161–194.

    Article  MathSciNet  Google Scholar 

  150. Caginalp, G. Nonlinear equations with coefficients of bounded variation in two space variables. J. Diff. Eqs. 43 (1982), 134–155.

    Article  MATH  MathSciNet  Google Scholar 

  151. Čanić, S. On the influence of viscosity on Riemann solutions. J. Dyn. Diff. Eqs. 10 (1998), 109–149.

    Google Scholar 

  152. Čanić, S. Nonexistence of Riemann solutions for a quadratic model deriving from petroleum engineering. Nonl. Anal. Real World Appl. 3 (2002), 629–665.

    Google Scholar 

  153. Čanić, S. and B.L. Keyfitz Quasi-one-dimensional Riemann problems and their role in self-similar two-dimensional problems. Arch. Rational Mech. Anal. 144 (1998), 233–258.

    MathSciNet  Google Scholar 

  154. Čanić, S. and B.L. Keyfitz Riemann problems for the two-dimensional unsteady transonic small disturbance equation. SIAM J. Appl. Math. 58 (1998), 636–665.

    MathSciNet  Google Scholar 

  155. Čanić, S., Keyfitz, B.L. and Eun Heui Kim Free boundary problems for the unsteady transonic small disturbance equation: transonic regular reflection. Methods Appl. Anal. 7 (2000) 313–335.

    MathSciNet  Google Scholar 

  156. Čanić, S., Keyfitz, B.L. and Eun Heui Kim Mixed hyperbolic-elliptic systems in self-similar flows. Bol. Soc. Brasil Mat. (N.S.) 32 (2001), 377–399.

    MathSciNet  Google Scholar 

  157. Čanić, S., Keyfitz, B.L. and Eun Heui Kim A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks. Comm. Pure Appl. Math. 55 (2002), 71–92.

    MathSciNet  Google Scholar 

  158. Čanić, S., Keyfitz, B.L. and G.M. Lieberman A proof of existence of perturbed steady transonic shocks via a free boundary problem. Comm. Pure Appl. Math. 53 (2000), 484–511.

    MathSciNet  Google Scholar 

  159. Čanić, S. and G.R. Peters Nonexistence of Riemann solutions and Majda-Pego instability. J. Diff. Eqs. 172 (2001), 1–28.

    Google Scholar 

  160. Čanić, S. and B.J. Plohr Shock wave admissibility for quadratic conservation laws. J. Diff. Eqs. 118 (1995), 293–335.

    Google Scholar 

  161. Carasso, C., Raviart, P.-A. and D. Serre (eds.) Nonlinear Hyperbolic Problems. Springer Lecture Notes in Mathematics No. 1270 (1987).

    Google Scholar 

  162. Cauchy, A.-L. Recherches sur l’ équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non ĺastiques. Bull. Soc. Philomathique (1823), 9–13.

    Google Scholar 

  163. Cauchy, A.-L. De la pression ou tension dans un corps solide. Exercises de Mathématiques 2 (1827), 42–56.

    Google Scholar 

  164. Cauchy, A.-L. Sur les relations qui existent dans l’ état d’ équilibre d’ un corps solide ou fluide, entre les pressions ou tensions et les forces accélératrices. Exercises de Mathématiques 2 (1827), 108–111.

    Google Scholar 

  165. Cauchy, A.-L. Sur l’ équilibre et le mouvement intérieur des corps considérés comme des masses continues. Exercises de Mathématiques 4 (1829), 293–319.

    Google Scholar 

  166. Cercignani, C. The Boltzmann Equation and its Applications. New York: Springer 1988.

    Google Scholar 

  167. Chae, Dongho and Hyungjin Huh Global existence for small initial data in the Born-Infeld equations. J. Math. Phys. 44 (2003). 6132–6139.

    MathSciNet  Google Scholar 

  168. Challis, J. On the velocity of sound. Philos. Magazine, Ser. 3, 32 (1848), 494–499.

    Google Scholar 

  169. Chang, Tung, Chen, Gui-Qiang, and Shuili Yang On the 2-D Riemann problem for the compressible Euler equations. I;II. Discrete Contin. Dynam. Systems 1 (1995), 555–584; 6 (2000), 419–430.

    MathSciNet  Google Scholar 

  170. Chang, Tung and Ling Hsiao A Riemann problem for the system of conservation laws of aerodynamics without convexity. Acta Math. Sinica 22 (1979), 719–732.

    MathSciNet  Google Scholar 

  171. Chang, Tung and Ling Hsiao Riemann problem and discontinuous initial value problem for typical quasilinear hyperbolic system without convexity. Acta Math. Sinica 20 (1977), 229–231.

    MathSciNet  Google Scholar 

  172. Chang, Tung and Ling Hsiao The Riemann Problem and Interaction of Waves in Gas Dynamics. Harlow: Longman, 1989.

    Google Scholar 

  173. Chasseigne, E. Fundamental solutions and singular shocks in scalar conservation laws. Revista Mat. Complutense 16 (2003), 443–463.

    MATH  MathSciNet  Google Scholar 

  174. Chemin, J.-Y. Dynamique des gaz à masse totale finie. Asymptotic Anal. 3 (1990), 215–220.

    MATH  MathSciNet  Google Scholar 

  175. Chemin, J.-Y. Remarque sur l’apparition de singularités fortes dans les écoulements compressibles. Comm. Math. Phys. 133 (1990), 323–329.

    Article  MATH  MathSciNet  Google Scholar 

  176. Chen, Gui-Qiang Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Scientia 6 (1986), 75–120.

    MATH  Google Scholar 

  177. Chen, Gui-Qiang The compensated compactness method and the system of isentropic gas dynamics. Berkeley: Math. Sci. Res. Inst. Preprint #00527-91, 1990.

    Google Scholar 

  178. Chen, Gui-Qiang Propagation and cancellation of oscillations for hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 44 (1991), 121–139.

    MATH  MathSciNet  Google Scholar 

  179. Chen, Gui-Qiang Hyperbolic systems of conservation laws with a symmetry. Comm. PDE 16 (1991), 1461–1487.

    MATH  Google Scholar 

  180. Chen, Gui-Qiang The method of quasidecoupling for discontinuous solutions to conservation laws. Arch. Rational Mech. Anal. 121 (1992), 131–185.

    Article  MATH  MathSciNet  Google Scholar 

  181. Chen, Gui-Qiang Remarks on global solutions to the compressible Euler equations with spherical symmetry. Proc. Royal Soc. Edinburgh 127A (1997), 243–259.

    Google Scholar 

  182. Chen, Gui-Qiang Vacuum states and global stability of rarefaction waves for compressible flow. Methods Appl. Anal. 7 (2000), 337–361.

    MATH  MathSciNet  Google Scholar 

  183. Chen, Gui-Qiang Compactness methods and nonlinear hyperbolic conservation laws. AMS/IP Stud. Adv. Math. 15 (2000), 33–75.

    MATH  Google Scholar 

  184. Chen, Gui-Qiang On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Mat. 32 (2001), 401–433.

    Article  MATH  Google Scholar 

  185. Chen, Gui-Qiang Some recent methods for partial differential equations of divergence form. Bull. Braz. Math. Soc. (N.S.) 34 (2003), 107–144.

    MATH  MathSciNet  Google Scholar 

  186. Chen, Gui-Qiang and C.M. Dafermos The vanishing viscosity method in one-dimensional thermoelasticity. Trans. AMS 347 (1995), 531–541.

    MathSciNet  Google Scholar 

  187. Chen, Gui-Qiang, Du, Qiang and E. Tadmor Spectral viscosity approximations to multidimensional scalar conservation laws. Math. Comp. 61 (1993), 629–643.

    MathSciNet  Google Scholar 

  188. Chen, Gui-Qiang and M. Feldman Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. AMS 16 (2003), 461–494.

    MathSciNet  Google Scholar 

  189. Chen, Gui-Qiang and M. Feldman Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations. Comm. Pure Appl. Math. 57 (2004), 310–336.

    Article  MathSciNet  Google Scholar 

  190. Chen, Gui-Qiang and M. Feldman Free boundary problems and transonic shocks for the Euler equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (3) 4 (2004), 827–869.

    MathSciNet  Google Scholar 

  191. Chen, Gui-Qiang and H. Frid Asymptotic Stability and Decay of Solutions of Conservation Laws. Lecture Notes, Northwestern U., 1996.

    Google Scholar 

  192. Chen, Gui-Qiang and H. Frid Existence and asymptotic behavior of the measure-valued solutions for degenerate conservation laws. J. Diff. Eqs. 127 (1996), 197–224.

    MathSciNet  Google Scholar 

  193. Chen, Gui-Qiang and H. Frid Asymptotic stability of Riemann waves for conservation laws. ZAMP 48 (1997), 30–44.

    MathSciNet  Google Scholar 

  194. Chen, Gui-Qiang and H. Frid Large time behavior of entropy solutions of conservation laws. J. Diff. Eqs. 152 (1999), 308–357.

    Article  MathSciNet  Google Scholar 

  195. Chen, Gui-Qiang and H. Frid Divergence measure fields and conservation laws. Arch. Rational Mech. Anal. 147 (1999), 89–118.

    Article  MathSciNet  Google Scholar 

  196. Chen, Gui-Qiang and H. Frid Decay of entropy solutions of nonlinear conservation laws. Arch. Rational Mech. Anal. 146 (1999), 95–127.

    Article  MathSciNet  Google Scholar 

  197. Chen, Gui-Qiang and H. Frid Uniqueness and asymptotic stability of Riemann solutions for the compressible Euler equations. Trans. AMS 353 (2001), 1103–1117.

    MathSciNet  Google Scholar 

  198. Chen, Gui-Qiang and H. Frid On the theory of divergence-measure fields and its applictions. Bol. Soc. Brasil Mat. (N.S.) 32 (2001), 1–33.

    MathSciNet  Google Scholar 

  199. Chen, Gui-Qiang and H. Frid Extended divergence-measure fields and the Euler equations of gas dynamics. Comm. Math. Phys. 236 (2003), 251–280.

    Article  MathSciNet  Google Scholar 

  200. Chen, Gui-Qiang, Frid, H. and Yachun Li Uniqueness and stability of Riemann solutions with large oscillations in gas dynamics. Comm. Math. Phys. 228 (2002), 201–217.

    MathSciNet  Google Scholar 

  201. Chen, Gui-Qiang and J. Glimm Global solutions to the compressible Euler equations with geometric structure. Comm. Math. Phys. 180 (1996), 153–193.

    Article  MathSciNet  Google Scholar 

  202. Chen, Gui-Qiang and J. Glimm Global solutions to the cylindrically symmetric rotating motion of isentropic gas. ZAMP 47 (1996), 353–372.

    MathSciNet  Google Scholar 

  203. Chen, Gui-Qiang and Pui-Tak Kan Hyperbolic conservation laws with umbilic degeneracy, I;II. Arch. Rational Mech. Anal. 130 (1995), 231–276; 160 (2001), 325-354.

    Article  MathSciNet  Google Scholar 

  204. Chen, Gui-Qiang and P.G. LeFloch Entropy flux-splitting for hyperbolic conservation laws. I. General framework. Comm. Pure Appl. Math. 48 (1995), 691–729.

    MathSciNet  Google Scholar 

  205. Chen, Gui-Qiang and P.G. LeFloch Compressible Euler equations with general pressure law. Arch. Rational Mech. Anal. 153 (2000), 221–259.

    Google Scholar 

  206. Chen, Gui-Qiang and P.G. LeFloch Existence theory for the isentropic Euler equations. Arch. Rational Mech. Anal. 166 (2003), 81–98.

    Google Scholar 

  207. Chen, Gui-Qiang, Levermore, C.D. and Tai-Ping Liu Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1994), 787–830.

    MathSciNet  Google Scholar 

  208. Chen, Gui-Qiang, Li, Bang-He and Tian-Hong Li Entropy solutions in L for the Euler equations in nonlinear elastodynamics and related equations. Arch. Rational Mech. Anal. 170 (2003), 331–357.

    Google Scholar 

  209. Chen, Gui-Qiang, Li, Dening and Dechun Tan Structure of Riemann solutions for two-dimensional scalar conservation laws. J. Diff. Eqs. 127 (1996), 124–147.

    MathSciNet  Google Scholar 

  210. Chen, Gui-Qiang, and Tian-Hong Li Global entropy solutions in L to the Euler equations and Euler-Poisson equations for isothermal fluids with spherical symmetry. Methods Appl. Anal. 10 (2003), 215–243.

    MathSciNet  Google Scholar 

  211. Chen, Gui-Qiang, and Yachun Li Stability of Riemann solutions with large oscillation for the relativistic Euler equations. J. Diff. Eqs. 202 (2004), 332–353.

    Article  Google Scholar 

  212. Chen, Gui-Qiang, and Yachun Li Relativistic Euler equations for isentropic fluids: Stability of Riemann solutions with large oscillations. ZAMP 55 (2004), 903–926.

    Google Scholar 

  213. Chen, Gui-Qiang and Hailiang Liu Formation of delta shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34 (2003), 925–938.

    MathSciNet  Google Scholar 

  214. Chen, Gui-Qiang and Hailiang Liu Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Phys. D 189 (2004), 141–165.

    Article  MathSciNet  Google Scholar 

  215. Chen, Gui-Qiang and Tai-Ping Liu Zero relaxation and dissipation limits for hyperbolic conservation laws. Comm. Pure Appl. Math. 46 (1993), 755–781.

    MathSciNet  Google Scholar 

  216. Chen, Gui-Qiang and Yun-Guang Lu The study on application way of the compensated compactness theory. Chinese Sci. Bull. 34 (1989), 15–19.

    MathSciNet  Google Scholar 

  217. Chen, Gui-Qiang and M. Rascle Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Rational Mech. Anal. 153 (2000), 205–220.

    MathSciNet  Google Scholar 

  218. Chen, Gui-Qiang and M. Torres Divergence-measure fields, sets of finite perimeter and conservation laws. Arch. Rational Mech. Anal. 175 (2005), 245–267.

    Article  MathSciNet  Google Scholar 

  219. Chen, Gui-Qiang and D.H. Wagner Global entropy solutions to exothermically reacting compressible Euler equations. J. Diff. Eqs. 191 (2003), 277–322.

    Article  MathSciNet  Google Scholar 

  220. Chen, Gui-Qiang and Dehua Wang The Cauchy problem for the Euler equations for compressible fluids. Handbook of Mathematical Fluid Dynamics, Vol. I, pp. 421–543, ed. S. Friedlander and D. Serre. Amsterdam: North Holland 2002.

    Google Scholar 

  221. Chen, Jing Conservation laws for the relativistic p-system. Comm. PDE 20 (1995), 1605–1646.

    MATH  Google Scholar 

  222. Chen, Peter J. Growth and Decay of Waves in Solids. Handbuch der Physik, Vol. VIa/3. Berlin: Springer 1973.

    Google Scholar 

  223. Chen, Shuxin Construction of solutions to M-D Riemann problem for a 2×2 quasilinear hyperbolic system. Chin. Ann. of Math. 18B (1997), 345–358.

    Google Scholar 

  224. Chen, Shuxin Asymptotic behavior of supersonic flow past a convex combined wedge. Chinese Ann. Math. 19B (1998), 255–264.

    Google Scholar 

  225. Chen, Shuxin Existence of stationary supersonic flow past a pointed wedge. Arch. Rational Mech. Anal. 156 (2001), 141–181.

    Article  MATH  Google Scholar 

  226. Chen, Shuxin A free boundary value problem of Euler system arising in supersonic flow past a curved cone. Tohoku Math. J. 54 (2002), 105–120.

    MATH  MathSciNet  Google Scholar 

  227. Cheng, Kuo Shung Asymptotic behavior of solutions of a conservation law without convexity conditions. J. Diff. Eqs. 40 (1981), 343–376.

    Article  MATH  Google Scholar 

  228. Cheng, Kuo Shung Decay rate of periodic solutions for a conservation law. J. Diff. Eqs. 42 (1981), 390–399.

    MATH  Google Scholar 

  229. Cheng, Kuo Shung A regularity theorem for a nonconvex scalar conservation law. J. Diff. Eqs. 61 (1986), 79–127.

    Article  MATH  Google Scholar 

  230. Chern, I-Liang and Tai-Ping Liu Convergence to diffusion waves of solutions for viscous conservation laws. Comm. Math. Phys. 110 (1987), 153–175.

    Article  MathSciNet  Google Scholar 

  231. Cheverry, C. The modulation equations of nonlinear geometric optics. Comm. PDE 21 (1996), 1119–1140.

    MATH  MathSciNet  Google Scholar 

  232. Cheverry, C. Justification de l’ optique géométrique non linéaire pour un système de lois de conservations. Duke Math. J. 87 (1997), 213–263.

    Article  MATH  MathSciNet  Google Scholar 

  233. Cheverry, C. Système de lois de conservations et stabilité BV. Mémoires Soc. Math. France. No. 75 (1998).

    Google Scholar 

  234. Cheverry, C. Regularizing effects for multidimensional scalar conservation laws. Anal. Non-Linéaire 16 (2000), 413–472.

    MathSciNet  Google Scholar 

  235. Choksi, R. The conservation law \(\partial _y u + \partial _x \sqrt {1 - u^2 } = 0\) and deformations of fibre reinforced materials. SIAM J. Appl. Math. 56 (1996), 1539–1560.

    Article  MATH  MathSciNet  Google Scholar 

  236. Choquet-Bruhat, V. Ondes asymptotiques et approchées pour systèmes d’ équations aux dérivées paratielles nonlinéaires. J. Math. Pures Appl. 48 (1969), 117–158.

    MATH  MathSciNet  Google Scholar 

  237. Chorin, A.J. Random choice solution of hyperbolic systems. J. Comp. Physics 22 (1976), 517–533.

    MATH  MathSciNet  Google Scholar 

  238. Christodoulou, D. Global solutions for nonlinear hyperbolic equations for small data. Comm. Pure Appl. Math. 39 (1986), 267–282.

    MATH  MathSciNet  Google Scholar 

  239. Christoffel, E.B. Untersuchungen uber die mit der Fortbestehen linearer partieller Differentialgleichungen verträglichen Unstetigkeiten. Ann. Mat. Pura Appl. 8 (1877), 81–113.

    MATH  Google Scholar 

  240. Christoforou, C.C. Hyperbolic systems of balance laws via vanishing viscosity. J. Diff. Eqs. (To appear).

    Google Scholar 

  241. Chueh, K.N., Conley, C.C. and J.A. Smoller Positively invariant regions for systems of nonlinear diffusion equations. Indiana U. Math. J. 26 (1977), 372–411.

    MathSciNet  Google Scholar 

  242. Ciarlet, P.G. Mathematical Elasticity. Amsterdam: North-Holland, 1988.

    Google Scholar 

  243. Clausius, R. Über einer veranderte Form des zweiten Hauptsatzes der mechanischen Warmetheorie. Ann. Physik 93 (1854), 481–506.

    Google Scholar 

  244. Cockburn, B., Coquel, F. and P.G. LeFloch Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal. 32 (1995), 687–705.

    Article  MathSciNet  Google Scholar 

  245. Coclite, G.M., Garavello, M. and B. Piccoli Traffic flow on a road network. (Preprint).

    Google Scholar 

  246. Coleman, B.D. and E.H. Dill Thermodynamic restrictions on the constitutive equations of electromagnetic theory. ZAMP 22 (1971), 691–702.

    Google Scholar 

  247. Coleman, B.D. and M.E. Gurtin Thermodynamics with internal state variables. J. Chem. Physics 47 (1967), 597–613

    Article  Google Scholar 

  248. Coleman, B.D. and V.J. Mizel Existence of caloric equations of state in thermodynamics. J. Chem. Physics 40 (1964), 1116–1125.

    Article  MathSciNet  Google Scholar 

  249. Coleman, B.D. and W. Noll The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13 (1963), 167–178.

    MathSciNet  Google Scholar 

  250. Collet, J.F. and M. Rascle Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatography. ZAMP 47 (1996), 400–409.

    Article  MathSciNet  Google Scholar 

  251. Colombo, R.M. Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63 (2002), 708–721.

    Article  MATH  MathSciNet  Google Scholar 

  252. Colombo, R.M. and A. Corli Continuous dependence in conservation laws with phase transitions. SIAM J. Math. Anal. 31 (1999), 34–62.

    Article  MathSciNet  Google Scholar 

  253. Colombo, R.M. and A. Corli On 2 × 2_conservation laws with large data. NoDEA, Nonl. Diff. Eqs. Appl. 10 (2003), 255–268.

    MathSciNet  Google Scholar 

  254. Colombo, R.M. and A. Corli Stability of the Riemann semigroup with respect to the kinetic condition. Quart. Appl. Math. 62 (2004), 541–551.

    MathSciNet  Google Scholar 

  255. Colombo, R.M. and N.H. Risebro Continuous dependence in the large for some equations of gas dynamics. Comm. PDE 23 (1998), 1693–1718.

    MathSciNet  Google Scholar 

  256. Conley, C.C. and J.A. Smoller Viscosity matrices for two-dimensional nonlinear hyperbolic systems. Comm. Pure Appl. Math. 23 (1970), 867–884.

    MathSciNet  Google Scholar 

  257. Conley, C.C. and J.A. Smoller Shock waves as limits of progressive wave solutions of high order equations I;II. Comm. Pure Appl. Math. 24 (1971), 459–471; 25 (1972), 131-146.

    MathSciNet  Google Scholar 

  258. Conley, C.C. and J.A. Smoller Viscosity matrices for two-dimensional nonlinear hyperbolic systems, II. Amer. J. Math. 94 (1972), 631–650.

    MathSciNet  Google Scholar 

  259. Conlon, J.G. Asymptotic behavior for a hyperbolic conservation law with periodic initial data. Comm. Pure Appl. Math. 32 (1979), 99–112.

    MATH  MathSciNet  Google Scholar 

  260. Conlon, J.G. A theorem in ordinary differential equations with application to hyperbolic conservation laws. Adv. in Math. 35 (1980) 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  261. Conlon, J.G. and Tai-Ping Liu Admissibility criteria for hyperbolic conservation laws. Indiana U. Math. J. 30 (1981), 641–652.

    MathSciNet  Google Scholar 

  262. Conway, E.D. The formation and decay of shocks of a conservation law in several dimensions. Arch. Rational Mech. Anal. 64 (1977), 47–57.

    Article  MATH  MathSciNet  Google Scholar 

  263. Conway, E.D. and J.A. Smoller Global solutions of the Cauchy problem for quasi-linear first order equations in several space variables. Comm. Pure Appl. Math. 19 (1966), 95–105.

    MathSciNet  Google Scholar 

  264. Coquel, F. and P.G. LeFloch Convergence of finite difference schemes for conservation laws in several space variables: a general theory. SIAM J. Num. Anal. 30 (1993), 675–700.

    Google Scholar 

  265. Coquel, F. and B. Perthame Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Num. Anal. 35 (1998), 2223–2249.

    MathSciNet  Google Scholar 

  266. Corli, A. Asymptotic analysis of contact discontinuities. Ann. Mat. Pura Appl. 173 (1997), 163–202.

    Article  MATH  MathSciNet  Google Scholar 

  267. Corli, A. Non-characteristic phase boundaries for general systems of conservation laws. Ital. J. Pure Appl. Math. 6 (1999), 43–62.

    MATH  MathSciNet  Google Scholar 

  268. Corli, A. and M. Sablé-Tougeron Perturbations of bounded variation of a strong shock wave. J. Diff. Eqs. 138 (1997), 195–228.

    Article  Google Scholar 

  269. Corli, A. and M. Sablé-Tougeron Stability of contact discontinuities under perturbations of bounded variation. Rend. Sem. Mat. Univ. Padova 97 (1997), 35–60.

    MathSciNet  Google Scholar 

  270. Corli, A. and M. Sablé-Tougeron Kinetic stabilization of a nonlinear sonic phase boundary. Arch. Rational Mech. Anal. 152 (2000), 1–63.

    Google Scholar 

  271. Correia, J., LeFloch, P.G. and Mai Duc Thanh Hyperbolic systems of conservation laws with Lipschitz continuous flux functions: the Riemann problem. Bol. Soc. Brasil Mat. (N.S) 32 (2001), 271–301.

    MathSciNet  Google Scholar 

  272. Cosserat, E. and F. Théorie des Corps Déformables. Paris: Hermann, 1909.

    Google Scholar 

  273. Coulombel, J.-F. Weakly stable multidimensional shocks. Analyse Non Linéaire 21 (2004), 401–443.

    MATH  MathSciNet  Google Scholar 

  274. Courant, R. and K.O. Friedrichs Supersonic Flow and Shock Waves. New York: Wiley-Interscience, 1948.

    Google Scholar 

  275. Courant, R. and D. Hilbert Methods of Mathematical Physics Vol. II. New York: Wiley-Interscience, 1962.

    Google Scholar 

  276. Crandall, M.G. The semigroup approach to first-order quasilinear equations in several space varibles. Israel J. Math. 12 (1972), 108–132.

    MATH  MathSciNet  Google Scholar 

  277. Crandall, M.G. and T.M. Liggett Generation of semi-groups of nonlinear transformations of general Banach spaces. Amer. J. Math. 93 (1971), 265–298.

    MathSciNet  Google Scholar 

  278. Crandall, M.G. and A. Majda The method of fractional steps for conservation laws. Math. Comput. 34 (1980), 285–314.

    Google Scholar 

  279. Crasta G. and P.G. LeFloch Existence results for a class of nonconservative and nonstrictly hyperbolic systems. Commun. Pure Appl. Anal. 1 (2002), 513–530.

    MathSciNet  Google Scholar 

  280. Crasta G. and B. Piccoli Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3 (1997), 477–502.

    MathSciNet  Google Scholar 

  281. Dacorogna, B. Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals. Lecture Notes in Math. No. 922 (1982). Berlin: Springer.

    Google Scholar 

  282. Dafermos, C.M. Asymptotic behavior of solutions of a hyperbolic conservation law. J. Diff. Eqs. 11 (1972), 416–424.

    MATH  MathSciNet  Google Scholar 

  283. Dafermos, C.M. Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972), 33–41.

    Article  MATH  MathSciNet  Google Scholar 

  284. Dafermos, C.M. The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Diff. Eqs. 14 (1973), 202–212.

    Article  MATH  MathSciNet  Google Scholar 

  285. Dafermos, C.M. Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Rational Mech. Anal. 52 (1973), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  286. Dafermos, C.M. Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 53 (1974), 203–217.

    Article  MATH  MathSciNet  Google Scholar 

  287. Dafermos, C.M. Quasilinear hyperbolic systems that result from conservation laws. Nonlinear Waves, pp. 82–102, ed. S. Leibovich and A. R. Seebass. Ithaca: Cornell U. Press, 1974.

    Google Scholar 

  288. Dafermos, C.M. Characteristics in hyperbolic conservation laws. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. I, pp. 1–58, ed. R.J. Knops. London: Pitman, 1977.

    Google Scholar 

  289. Dafermos, C.M. Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana U. Math. J. 26 (1977), 1097–1119.

    MATH  MathSciNet  Google Scholar 

  290. Dafermos, C.M. The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70 (1979), 167–179.

    Article  MATH  MathSciNet  Google Scholar 

  291. Dafermos, C.M. Hyperbolic systems of conservation laws. Systems of Nonlinear Partial Differential Equations, pp. 25–70, ed. J.M. Ball. Dordrecht: D. Reidel 1983.

    Google Scholar 

  292. Dafermos, C.M. Regularity and large time behavior of solutions of a conservation law without convexity. Proc. Royal Soc. Edinburgh 99A (1985), 201–239.

    MathSciNet  Google Scholar 

  293. Dafermos, C.M. Quasilinear hyperbolic systems with involutions. Arch. Rational Mech. Anal. 94 (1986), 373–389.

    Article  MATH  MathSciNet  Google Scholar 

  294. Dafermos, C.M. Estimates for conservation laws with little viscosity. SIAM J. Math. Anal. 18 (1987), 409–421.

    Article  MATH  MathSciNet  Google Scholar 

  295. Dafermos, C.M. Trend to steady state in a conservation law with spatial inhomogeneity. Quart. Appl. Math. 45 (1987), 313–319.

    MATH  MathSciNet  Google Scholar 

  296. Dafermos, C.M. Admissible wave fans in nonlinear hyperbolic systems. Arch. Rational Mech. Anal. 106 (1989), 243–260.

    MATH  MathSciNet  Google Scholar 

  297. Dafermos, C.M. Generalized characteristics in hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 107 (1989), 127–155.

    Article  MATH  MathSciNet  Google Scholar 

  298. Dafermos, C.M. Equivalence of referential and spatial field equations in continuum physics. Notes Num. Fluid Mech. 43 (1993), 179–183.

    MATH  MathSciNet  Google Scholar 

  299. Dafermos, C.M. Large time behavior of solutions of hyperbolic systems of conservation laws with periodic initial data. J. Diff. Eqs. 121 (1995), 183–202.

    Article  MATH  MathSciNet  Google Scholar 

  300. Dafermos, C.M. Stability for systems of conservation laws in several space dimensions. SIAM J. Math. Anal. 26 (1995), 1403–1414.

    Article  MATH  MathSciNet  Google Scholar 

  301. Dafermos, C.M. A system of hyperbolic conservation laws with frictional damping. ZAMP Special Issue, 46 (1995), S294–S307.

    MATH  MathSciNet  Google Scholar 

  302. Dafermos, C.M. Entropy and the stability of classical solutions of hyperbolic systems of conservation laws. Lecture Notes in Math. No. 1640 (1996), 48–69. Berlin: Springer.

    Google Scholar 

  303. Dafermos, C.M. Hyperbolic systems of balance laws with weak dissipation. (In preparation).

    Google Scholar 

  304. Dafermos, C.M. A variational approach to the Riemann problem for hyperbolic conservation laws. (In preparation).

    Google Scholar 

  305. Dafermos, C.M. and R.J. DiPerna The Riemann problem for certain classes of hyperbolic systems of conservation laws. J. Diff. Eqs. 20 (1976), 90–114.

    Article  Google Scholar 

  306. Dafermos, C.M. and Xiao Geng Generalized characteristics in hyperbolic systems of conservation laws with special coupling. Proc. Royal Soc. Edinburgh 116A (1990), 245–278.

    MathSciNet  Google Scholar 

  307. Dafermos, C.M. and Xiao Geng Generalized characteristics, uniqueness and regularity of solutions in a hyperbolic system of conservation laws. Ann. Inst. Henri Poincaré 8 (1991), 231–269.

    MathSciNet  Google Scholar 

  308. Dafermos, C.M. and W.J. Hrusa Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics. Arch. Rational Mech. Anal. 87 (1985), 267–292.

    Article  MathSciNet  Google Scholar 

  309. Dafermos, C.M. and Ling Hsiao Hyperbolic systems of balance laws with inhomogeneity and dissipation. Indiana U. Math. J. 31 (1982), 471–491.

    MathSciNet  Google Scholar 

  310. Dal Masso, G., LeFloch, P. and F. Murat Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995), 483–548.

    MathSciNet  Google Scholar 

  311. De Lellis, C. Blow-up of the BV norm in the multidimensional Keyfitz and Kranzer system. Duke Math. J. 127 (2005), 313–339.

    MATH  MathSciNet  Google Scholar 

  312. De Lellis, C. and F. Golse A quantitative compactness estimate for scalar conservation laws. Comm. Pure Appl. Math. 58 (2005), 989–998.

    MathSciNet  Google Scholar 

  313. De Lellis, C., Otto, F. and M. Westdickenberg Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Rational Mech. Anal. 170 (2003), 137–184.

    Article  Google Scholar 

  314. De Lellis, C., Otto, F. and M. Westdickenberg Minimal entropy conditions for Burgers equation. Quart. Appl. Math. 62 (2004), 687–700.

    MathSciNet  Google Scholar 

  315. De Lellis, C. and T. Rivière The rectifiability of entropy measures in one space dimension. J. Math. Pure Appl. 82 (2003), 1343–1367.

    MathSciNet  Google Scholar 

  316. Demengel, F. and D. Serre Nonvanishing singular parts of measure-valued solutions for scalar hyperbolic equations. Comm. PDE 16 (1991), 221–254.

    MathSciNet  Google Scholar 

  317. Demoulini, S., Stuart, D. M.A. and A. E. Tzavaras Construction of entropy solutions for one-dimensional elastodynamics via time discretization. Ann. Inst. Henri Poincaré 17 (2000), 711–731.

    MathSciNet  Google Scholar 

  318. Demoulini, S., Stuart, D. M.A. and A. E. Tzavaras A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy. Arch. Rational Mech. Anal. 157 (2001), 325–344.

    Article  MathSciNet  Google Scholar 

  319. DeVore, R.A. and B.J. Lucier On the size and smoothness of solutions to nonlinear hyperbolic conservation laws. SIAM J. Math. Anal. 27 (1996), 684–707.

    MathSciNet  Google Scholar 

  320. Dias, J.-P. and P.G. LeFloch Some existence results for conservation laws with source-term. Math. Methods Appl. Sci. 25 (2002), 1149–1160.

    Article  MathSciNet  Google Scholar 

  321. Diehl, S. A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. 56 (1996), 388–419.

    Article  MATH  MathSciNet  Google Scholar 

  322. Ding, Xia Xi, Chen, Gui-Qiang and Pei Zhu Luo Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I)-(II). Acta Math. Scientia 5 (1985), 415–472; 6 (1986), 75-120; 9 (1989), 43-44.

    MathSciNet  Google Scholar 

  323. Ding, Yi, and Feimin Huang On a nonhomogeneous system of pressureless flow. Quart. Appl. Math. 62 (2004), 509–528.

    MathSciNet  Google Scholar 

  324. DiPerna, R.J. Global solutions to a class of nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 26 (1973), 1–28.

    MathSciNet  Google Scholar 

  325. DiPerna, R.J. Existence in the large for quasilinear hyperbolic conservation laws. Arch. Rational Mech. Anal. 52 (1973), 244–257.

    MATH  MathSciNet  Google Scholar 

  326. DiPerna, R.J. Singularities of solutions of nonlinear hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 60 (1975), 75–100.

    MATH  MathSciNet  Google Scholar 

  327. DiPerna, R.J. Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation laws. Indiana U. Math. J. 24 (1975), 1047–1071.

    MATH  Google Scholar 

  328. DiPerna, R.J. Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Diff. Eqs. 20 (1976), 187–212.

    MATH  Google Scholar 

  329. DiPerna, R.J. Decay of solutions of hyperbolic systems of conservation laws with a convex extension. Arch. Rational Mech. Anal. 64 (1977), 1–46.

    MATH  MathSciNet  Google Scholar 

  330. DiPerna, R.J. Uniqueness of solutions to hyperbolic conservation laws. Indiana U. Math. J. 28 (1979), 137–188.

    Google Scholar 

  331. DiPerna, R.J. Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82 (1983), 27–70.

    MATH  MathSciNet  Google Scholar 

  332. DiPerna, R.J. Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91 (1983), 1–30.

    MATH  MathSciNet  Google Scholar 

  333. DiPerna, R.J. Compensated compactness and general systems of conservation laws. Trans. A.M.S. 292 (1985), 283–420.

    Google Scholar 

  334. DiPerna, R.J. Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88 (1985), 223–270.

    MathSciNet  Google Scholar 

  335. DiPerna, R.J. and P.-L. Lions On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. of Math. 130 (1989), 321–366.

    MathSciNet  Google Scholar 

  336. DiPerna, R. and A. Majda The validity of nonlinear geometric optics for weak solutions of conservation laws. Comm. Math. Phys. 98 (1985), 313–347.

    MathSciNet  Google Scholar 

  337. Donato A. and F. Oliveri (eds.) Nonlinear Hyperbolic Problems. Braunschweig: Vieweg 1993.

    Google Scholar 

  338. Douglis, A. Layering methods for nonlinear partial differential equations of first order. Ann. Inst. Fourier, Grenoble 22 (1972), 141–227.

    MATH  MathSciNet  Google Scholar 

  339. DuBois, F. and P.G. LeFloch Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Diff. Eqs. 71 (1988), 93–122.

    Google Scholar 

  340. Dubroca, B. and G. Gallice Résultats d’ existence et d’ unicité du problème mixte pour des systèmes hyperbolique de lois de conservation monodimensionels. Comm. PDE 15 (1990), 59–80.

    MathSciNet  Google Scholar 

  341. Duhem, P. Recherches sur l’ hydrodynamique. Ann. Toulouse 3 (1901), 315–377.

    MATH  MathSciNet  Google Scholar 

  342. E, Weinan Propagation of oscillations in the solutions of 1 — d compressible fluid equations. Comm. PDE 17 (1992), 347–370.

    MATH  MathSciNet  Google Scholar 

  343. E, Weinan Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math. 52 (1992), 959–972.

    MathSciNet  Google Scholar 

  344. E, Weinan Aubry-Mather theory and periodic solutions of the forced Burgers equation. Comm. Pure Appl. Math. 52 (1999), 811–828.

    MathSciNet  Google Scholar 

  345. E, Weinan, Khanin, K., Mazel, A. and Ya. G. Sinai Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. 151 (2000), 877–960.

    MathSciNet  Google Scholar 

  346. E, Weinan, Rykov, Yu. and Ya. G. Sinai Generalized variational principles, global existence of weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996), 349–380.

    Article  MathSciNet  Google Scholar 

  347. E, Weinan and D. Serre Correctors for the homogenization of conservation laws with oscillatory forcing terms. Asymptotic Analysis 5 (1992), 311–316.

    MathSciNet  Google Scholar 

  348. Earnshaw, S. On the mathematical theory of sound. Trans. Royal Soc. London 150 (1860), 133–148.

    Google Scholar 

  349. Ehrt, J. and J. Härterich Asymptotic behavior of spatially inhomogeneous balance laws. J. Hyperbolic Diff. Eqs. (To appear).

    Google Scholar 

  350. Engquist, B. and B. Gustafsson (eds.) Third International Conference on Hyperbolic Problems, Vols. I–II. Lund: Chartwell-Bratt 1991.

    Google Scholar 

  351. Engquist, B. and Weinan E Large time behavior and homogenization of solutions of two-dimensional conservation laws. Comm. Pure Appl. Math. 46 (1993), 1–26.

    MathSciNet  Google Scholar 

  352. Ercole, G. Delta-shock waves as self-similar viscosity limits. Quart. Appl. Math. 58 (2000), 177–199.

    MATH  MathSciNet  Google Scholar 

  353. Euler, L. Principes généraux du mouvement des fluides. Mém. Acad. Sci. Berlin 11 (1755), 274–315.

    Google Scholar 

  354. Euler, L. FrSupplément aux recherches sur la propagation du son. Mém. Acad. Sci. Berlin 15 (1759), 210–240.

    Google Scholar 

  355. Evans, L.C. Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference Series in Mathematics No. 74. Providence: American Mathematical Society, 1990.

    Google Scholar 

  356. Evans, L.C. Partial Differential Equations. Providence: AMS, 1998.

    Google Scholar 

  357. Evans, L.C. and R.F. Gariepy Measure Theory and Fine Properties of Functions. Boca Raton: CRC Press, 1992.

    Google Scholar 

  358. Fan, Haitao A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase. Arch. Rational Mech. Anal. 116 (1992), 317–338.

    Article  MathSciNet  Google Scholar 

  359. Fan, Haitao One-phase Riemann problems and wave interactions in systems of conservation laws of mixed type. SIAM J. Math. Anal. 24 (1993), 840–865.

    Article  MATH  MathSciNet  Google Scholar 

  360. Fan, Haitao Global versus local admissibility criteria for dynamic phase boundaries. Proc. Royal Soc. Edinburg 123A (1993), 927–944.

    Google Scholar 

  361. Fan, Haitao A vanishing viscosity approach on the dynamics of phase transitions in van der Waals fluids. J. Diff. Eqs. 103 (1993), 179–204.

    Article  MATH  Google Scholar 

  362. Fan, Haitao One-phase Riemann problem and wave interactions in systems of conservation laws of mixed type. SIAM J. Math. Anal. 24 (1993), 840–865.

    Article  MATH  MathSciNet  Google Scholar 

  363. Fan, Haitao Traveling waves, Riemann problems and computations of a model of the dynamics of liquid/vapor phase transitions. J. Diff. Eqs. 150 (1998), 385–437.

    Article  MATH  Google Scholar 

  364. Fan, Haitao and J.K. Hale Large time behavior in inhomogeneous conservation laws. Arch. Rational Mech. Anal. 125 (1993), 201–216.

    Article  MathSciNet  Google Scholar 

  365. Fan, Haitao and J.K. Hale Attractors in inhomogeneous conservation laws and parabolic regularizations. Trans. AMS 347 (1995), 1239–1254.

    MathSciNet  Google Scholar 

  366. Fan, Haitao, Jin Shi and Zhen-huan Teng Zero reaction limit for hyperbolic conservation laws with source terms. J. Diff. Eqs. 168 (2000), 270–294.

    Google Scholar 

  367. Federer, H. Geometric Measure Theory. New York: Springer, 1969.

    Google Scholar 

  368. Feireisl, E. and H. Petzeltová Long-time behaviour for multidimensional scalar conservation laws. J. Reine Angew. Math. 519 (2000), 1–16.

    MathSciNet  Google Scholar 

  369. Ferziger, J.H. and H.G. Kaper Mathematical Theory of Transport Processes in Gases, §5.5. Amsterdam: North-Holland, 1972.

    Google Scholar 

  370. Fey, M. and R. Jeltsch (eds.) Hyperbolic Problems, Vols. I-II. Basel: Birkhauser 1999.

    Google Scholar 

  371. Fife, P.C. and Xiao Geng Mathematical aspects of electrophoresis. Reaction-Diffusion Equaitons, pp.139–172, eds. K.J. Brown and A.A. Lacey. Oxford: Clarendon Press, 1990.

    Google Scholar 

  372. Filippov, A.F. Differential Equations with Discontinuous Righthand Sides. Dordrecht: Kluwer, 1988.

    Google Scholar 

  373. Foy, R.L. Steady state solutions of hyperbolic systems of conservation laws with viscosity terms. Comm. Pure Appl. Math. 17 (1964), 177–188.

    MATH  MathSciNet  Google Scholar 

  374. Francheteau, J. and G. Métivier Existence des Chocs Faibles pour des Systèmes Quasi-Linéaires Hyperboliques Multidimensionnels. Astérisque 268 (2000).

    Google Scholar 

  375. Freistühler, H. Instability of vanishing viscosity approximation to hyperbolic systems of conservation laws with rotational invariance. J. Diff. Eqs. 87 (1990), 205–226.

    MATH  Google Scholar 

  376. Freistühler, H. Linear degeneracy and shock waves. Math. Z. 207 (1991), 583–596.

    MATH  MathSciNet  Google Scholar 

  377. Freistühler, H. Rotational degeneracy of hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 113 (1991), 39–64.

    MATH  Google Scholar 

  378. Freistühler, H. Dynamical stability and vanishing viscosity. A case study of a non-strictly hyperbolic system. Comm. Pure Appl. Math. 45 (1992), 561–582.

    MATH  MathSciNet  Google Scholar 

  379. Freistühler, H. Hyperbolic systems of conservation laws with rotationally equivariant flux function. Mat. Aplic. Comp. 11 (1992), 45–71.

    Google Scholar 

  380. Freistühler, H. Nonuniformity of vanishing viscosity approximation. Appl. Math. Letters 6(2) (1993), 35–41.

    MATH  Google Scholar 

  381. Freistühler, H. On the Cauchy problem for a class of hyperbolic systems of conservation laws. J. Diff. Eqs. 112 (1994), 170–178.

    MATH  Google Scholar 

  382. Freistühler, H. Some results on the stability of nonclassical shock waves. J. Partial Differential Equations 11 (1998), 25–38.

    MATH  MathSciNet  Google Scholar 

  383. Freistühler, H. and Tai-Ping Liu Nonlinear stability of overcompressive shock waves in a rotationally invariant system of viscous conservation laws. Comm. Math. Phys. 153 (1993), 147–158.

    MathSciNet  Google Scholar 

  384. Freistühler, H. and D. Serre L1 stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math. 51 (1998), 291–301.

    MathSciNet  Google Scholar 

  385. Freistühler, H. and D. Serre The L1 stability of boundary layers in scalar viscous conservation laws. J. Dyn. Diff. Eqs. 13 (2001), 745–755.

    Google Scholar 

  386. Freistühler, H. and P. Szmolyan Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26 (1995), 112–128.

    MathSciNet  Google Scholar 

  387. Freistühler, H. and P. Szmolyan Spectral stability of small shock waves. Arch. Rational Mech. Anal. 164 (2002), 287–309.

    Google Scholar 

  388. Freistühler, H. and G. Warnecke (eds.) Hyperbolic Problems, Vols. I-II. Basel: Birkhauser 2001.

    Google Scholar 

  389. Frid, H. Initial-boundary value problems for conservation laws. J. Diff. Eqs. 128 (1996), 1–45.

    Article  MATH  MathSciNet  Google Scholar 

  390. Frid, H. Measure-valued solutions to initial-boundary value problems for certain systems of conservation laws: Existence and dynamics. Trans. AMS 348 (1996), 51–76.

    MATH  MathSciNet  Google Scholar 

  391. Frid, H. and I-Shih Liu Oscillation waves in Riemann problems for phase transitons. Quart. Appl. Math. 56 (1998), 115–135.

    MathSciNet  Google Scholar 

  392. Friedlander, S. and D. Serre (eds.) Handbook of Mathematical Fluid Dynamics, Vols. 1,2. Amsterdam: North Holland 2002.

    Google Scholar 

  393. Friedrichs, K.O. Nonlinear hyperbolic differential equations for functions of two independent variables. Am. J. Math. 70 (1948), 555–589.

    MATH  MathSciNet  Google Scholar 

  394. Friedrichs, K.O. Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954), 345–392.

    MATH  MathSciNet  Google Scholar 

  395. Friedrichs, K.O. On the laws of relativistic electro-magneto-fluid dynamics. Comm. Pure Appl. Math. 27 (1974), 749–808.

    MATH  MathSciNet  Google Scholar 

  396. Friedrichs, K.O. and P.D. Lax Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. USA 68 (1971), 1686–1688.

    MathSciNet  Google Scholar 

  397. Fries, C. Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock waves. J. Diff. Eqs. 146 (1998), 185–202.

    Article  MATH  MathSciNet  Google Scholar 

  398. Fries, C. Stability of viscous shock waves associated with non-convex modes. Arch. Rational Mech. Anal. 152 (2000), 141–186.

    Article  MATH  MathSciNet  Google Scholar 

  399. Fusco, D. Reduction Methods for 2 × 2 Quasilinear Hyperbolic Systems of First Order PDEs. Quaderni del Consiglio Nazionale delle Ricerche, Gruppo Nazionale di Fisica Matematica. No. 48, 1995.

    Google Scholar 

  400. Gardner, R.A. and K. Zumbrun The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51 (1998), 797–855.

    Article  MathSciNet  Google Scholar 

  401. Gelfand, I. Some problems in the theory of quasilinear equations. Usp. Mat. Nauk 14 (1959), 87–158. English translation: AMS Translations, Ser. II, 29, 295-381.

    Google Scholar 

  402. Gerbeau, J.-F. and B. Perthame Derivation of viscous Saint-Venant system for shallow water; numerical validation. Discrete Contin. Dynam. Systems B1 (2001), 89–102.

    MathSciNet  Google Scholar 

  403. Giga Y. and T. Miyakawa A kinetic construction of global solutions of first order quasilinear equations. Duke Math. J. 50 (1983), 505–515.

    Article  MathSciNet  Google Scholar 

  404. Gilbarg, D. The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73 (1951), 256–274.

    MATH  MathSciNet  Google Scholar 

  405. Gimse, T. Conservation laws with discontinuous flux functions. SIAM J. Math. Anal. 24 (1993), 279–289.

    Article  MATH  MathSciNet  Google Scholar 

  406. Gimse, T. and N.H. Risebro Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992), 635–648.

    Article  MathSciNet  Google Scholar 

  407. Gisclon, M. Etude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. J. Math. Pures Appl. 75 (1996), 485–508.

    MATH  MathSciNet  Google Scholar 

  408. Gisclon, M. and D. Serre Etude des conditions aux limites pour un système strictement hyperbolique via l’ approximation parabolique. C. R. Acad. Sci. Paris, Série I, 319 (1994), 377–382.

    MathSciNet  Google Scholar 

  409. Giusti, E. Minimal Surfaces and Functions of Bounded Variation. Boston: Birkhauser, 1984.

    Google Scholar 

  410. Glimm, J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697–715.

    MATH  MathSciNet  Google Scholar 

  411. Glimm, J. The interaction of nonlinear hyperbolic waves. Comm. Pure Appl. Math. 41 (1988), 569–590.

    MATH  MathSciNet  Google Scholar 

  412. Glimm, J., Grove, J.W., Graham, M.J. and P.J. Plohr (eds.) Hyperbolic Problems. Singapore: World Scientific, 1996.

    Google Scholar 

  413. Glimm, J. and P.D. Lax Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs AMS, No. 101 (1970).

    Google Scholar 

  414. Goatin, P. One-sided estimates and uniqueness for hyperbolic systems of balance laws. Math. Models Methods Appl. Sci. 13 (2003), 527–543.

    Article  MATH  MathSciNet  Google Scholar 

  415. Goatin, P. and L. Gosse Decay of positive waves for n × n hyperbolic systems of balance laws. Proc. AMS 132 (2004), 1627–1637.

    MathSciNet  Google Scholar 

  416. Goatin, P. and P.G. LeFloch Sharp L1 stability estimates for hyperbolic conservation laws. Port. Math. (N.S.) 58 (2001), 77–120.

    MathSciNet  Google Scholar 

  417. Goatin, P. and P.G. LeFloch Sharp L1 continuous dependence of solutions of bounded variation for hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 157 (2001), 35–73.

    Article  Google Scholar 

  418. Goatin, P. and P.G. LeFloch L1 continuous dependence for the Euler equations of compressible fluid dynamics. Commun. Pure Appl. Anal. 2 (2003), 107–137.

    MathSciNet  Google Scholar 

  419. Goatin, P. and P.G. LeFloch The Riemann problem for a class of resonant nonlinear systems of balance laws. Analyse Non Linéaire 21 (2004), 881–902.

    Google Scholar 

  420. Godin, P. Global shock waves in some domains for the isentropic irrotational potential flow equations. Comm. PDE 22 (1997), 1929–1997.

    MATH  MathSciNet  Google Scholar 

  421. Godlewski, E. and P.-A. Raviart Hyperbolic Systems of Conservation Laws. Paris: Ellipses, 1991.

    Google Scholar 

  422. Godlewski, E. and P.-A. Raviart Numerical Approximation of Hyperbolic Systems of Conservation Laws. New York: Springer, 1996.

    Google Scholar 

  423. Godunov, S.K. An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139 (1961), 521–523. English translation: Soviet Math. 2 (1961), 947–949.

    Google Scholar 

  424. Godunov, S.K. Elements of Continuum Mechanics. Moscow: Nauka, 1978.

    Google Scholar 

  425. Godunov, S.K. Lois de conservation et integrales d’ énergie des équations hyperboliques. Lecture Notes in Math. No. 1270 (1987), 135–149. Berlin: Springer.

    Google Scholar 

  426. Goodman, J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986), 325–344.

    Article  MATH  MathSciNet  Google Scholar 

  427. Goodman, J., Szepessy A., and K. Zumbrun A remark on stability of viscous waves. SIAM J. Math. Anal. 25 (1994), 1463–1467.

    Article  MathSciNet  Google Scholar 

  428. Goodman J. and Zhou Ping Xin Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch. Rational Mech. Anal. 121 (1992), 235–265.

    Article  MathSciNet  Google Scholar 

  429. Gosse, L. and A.E. Tzavaras Convergence of relaxation schemes to the equations of elastodynamics. Math. Comp. 70 (2001), 555–577.

    Article  MathSciNet  Google Scholar 

  430. Grassin, M. and D. Serre Existence de solutions globales et régulières aux équations d’ Euler pour un gaz parfait isentropique. C. R. Acad. Sci. Paris, Série I, 325 (1997), 721–726.

    MathSciNet  Google Scholar 

  431. Greenberg, J.M. On the elementary interactions for the quasilinear wave equation. Arch. Rational Mech. Anal. 43 (1971), 325–349.

    Article  MATH  MathSciNet  Google Scholar 

  432. Greenberg, J.M. On the interaction of shocks and simple waves of the same family, Parts I and II. Arch. Rational Mech. Anal. 37 (1970), 136–160; 51 (1973), 209–217.

    Article  MATH  MathSciNet  Google Scholar 

  433. Greenberg, J.M. Smooth and time periodic solutions to the quasilinear wave equation. Arch. Rational Mech. Anal. 60 (1975), 29–50.

    MATH  MathSciNet  Google Scholar 

  434. Greenberg, J.M., Klar, A. and M. Rascle Congestion on multilane highways. SIAM J. Appl. Math. 63 (2003), 818–833.

    Article  MathSciNet  Google Scholar 

  435. Greenberg, J.M. and M. Rascle Time-periodic solutions to systems of conservation laws. Arch. Rational Mech. Anal. 115 (1991), 395–407.

    Article  MathSciNet  Google Scholar 

  436. Greenberg, J.M. and Donald D.M. Tong Decay of periodic solutions of ∂tu + ∂ xf(u) = 0. J. Math. Anal. Appl. 43 (1973), 56–71.

    Article  MathSciNet  Google Scholar 

  437. Grenier, E. Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Diff. Eqs. 143 (1998), 110–146.

    Article  MATH  MathSciNet  Google Scholar 

  438. Greven, A., Keller, G. and G. Warnecke (eds.) Entropy. Princeton: Princeton University Press, 2003.

    Google Scholar 

  439. Gripenberg, G. Compensated compactness and one-dimensional elastodynamics Ann. Scuola Norm. Sup. Pisa, Cl. Sci 22 (1995), 227–240.

    MATH  MathSciNet  Google Scholar 

  440. Grot, R.A. Relativistic continuum physics: electromagnetic interactions. Continuum Physics, Vol. III, pp. 129–219, ed. A.C. Eringen. New York: Academic Press, 1976.

    Google Scholar 

  441. Guckenheimer, J. Solving a single conservaton law. Lecture Notes in Math. No. 468 (1975), 108–134. Berlin: Springer.

    Google Scholar 

  442. Guckenheimer, J. Shocks and rarefactions in two space dimensions. Arch. Rational Mech. Anal. 59 (1975), 281–291.

    Article  MATH  MathSciNet  Google Scholar 

  443. Gues, O., Métivier, G., Williams, M. and K. Zumbrun Multidimensional viscous shocks I. J. AMS 18 (2005), 61–120.

    Google Scholar 

  444. Gues, O., Métivier, G., Williams, M. and K. Zumbrun Multidimensional viscous shocks II. Comm. Pure Appl. Math. 57 (2004), 141–218.

    MathSciNet  Google Scholar 

  445. Gues, O. and M. Williams Curved shocks as viscous limits: a boundary problem approach. Indiana U. Math. J. 51 (2002), 421–450.

    MathSciNet  Google Scholar 

  446. Gurtin, M.E. An Introduction to Continuum Mechanics. New York: Academic Press, 1981.

    Google Scholar 

  447. Ha, Seung-Yeal L1 stability for systems of conservation laws with a nonresonant moving source. SIAM J. Math. Anal. 33 (2001), 411–439.

    Article  MATH  MathSciNet  Google Scholar 

  448. Ha, Seung-Yeal and Tong Yang L1 stability for systems of conservation laws with a resonant moving source. SIAM J. Math. Anal. 34 (2003), 1226–1251.

    Article  MathSciNet  Google Scholar 

  449. Hadamard, J. Leçons sur la Propagation des Ondes et les Equations de l’ Hydrodynamique. Paris: Hermann, 1903.

    Google Scholar 

  450. Hagan, R. and M. Slemrod The viscosity-capillarity criterion for shocks and phase transitions. Arch. Rational Mech. Anal. 83 (1983), 333–361.

    Article  MathSciNet  Google Scholar 

  451. Hanouzet, B. and R. Natalini Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal. 169 (2003), 89–117.

    Article  MathSciNet  Google Scholar 

  452. Hanyga, A. Mathematical Theory of Non-Linear Elasticity. Warszawa: PWN, 1985.

    Google Scholar 

  453. Harten, A. On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49 (1983), 151–164.

    MATH  MathSciNet  Google Scholar 

  454. Harten, A., Lax, P.D., Levermore, C.D. and W.J. Morokoff Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35 (1998), 2117–2127.

    Article  MathSciNet  Google Scholar 

  455. Härterich, J. Heteroclinic orbits between rotating waves in hyperbolic balance laws. Proc. Royal Soc. Edinburgh 129A (1999), 519–538.

    Google Scholar 

  456. Hattori, Harumi The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion. Isothermal case. Arch. Rational Mech. Anal. 92 (1986), 247–263.

    Article  MATH  MathSciNet  Google Scholar 

  457. Hattori, Harumi The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion. Nonisothermal case. J. Diff. Eqs. 65 (1986), 158–174.

    Article  MATH  MathSciNet  Google Scholar 

  458. Hattori, Harumi The entropy rate admissibility criterion and the double phase boundary problem. Contemp. Math. 60 (1987), 51–65.

    MATH  MathSciNet  Google Scholar 

  459. Hattori, Harumi The Riemann problem and the existence of weak solutions to a system of mixed-type in dynamic phase transitions. J. Diff. Eqs. 146 (1998), 287–319.

    Article  MATH  MathSciNet  Google Scholar 

  460. Hattori, Harumi The entropy rate admissibility criterion and the entropy condition for a phase transition problem: The isothermal case. SIAM J. Math. Anal. 31 (2000), 791–820.

    Article  MATH  MathSciNet  Google Scholar 

  461. Hattori, Harumi The existence and large time behavior of solutions to a system related to a phase transition problem. SIAM J. Math. Anal. 34 (2003), 774–804.

    Article  MATH  MathSciNet  Google Scholar 

  462. Hattori, Harumi The Riemann problem for thermoelastic materials with phase change. J. Diff. Eqs. 205 (2004), 229–252.

    Article  MATH  MathSciNet  Google Scholar 

  463. Hattori, Harumi and K. Mischaikow A dynamical system approach to a phase transition problem. J. Diff. Eqs. 94 (1991), 340–378.

    Article  MathSciNet  Google Scholar 

  464. Hayes, B.T. and P.G. LeFloch Measure solutions to a strictly hyperbolic system of conservation laws. Nonlinearity 9 (1996), 1547–1563.

    Article  MathSciNet  Google Scholar 

  465. Hayes, B.T. and P.G. LeFloch Nonclassical shocks and kinetic relations: Scalar conservaton laws. Arch. Rational Mech. Anal. 139 (1997), 1–56.

    Article  MathSciNet  Google Scholar 

  466. Hayes, B.T. and P.G. LeFloch Nonclassical shocks and kinetic relations: Strictly hyperbolic systems. SIAM J. Math. Anal. 31 (2000), 941–991.

    Article  MathSciNet  Google Scholar 

  467. Hayes, B.T. and M. Shearer Undercompressive shocks for scalar conservation laws with nonconvex fluxes. Proc. Royal Soc. Edinburgh 129A (1999), 717–732.

    MathSciNet  Google Scholar 

  468. He, Cheng and Hailiang Li Asymptotic behavior toward the rarefaction wave for solutions of a rate-type viscoelastic system with boundary effect. Acta Math. Sci. 20B (2000), 245–255.

    MathSciNet  Google Scholar 

  469. Hedstrom, G.W. Some numerical experiments with Dafermos’s method for nonlinear hyperbolic equations. Lecture Notes in Math. No. 267 (1972), 117–138. Berlin: Springer.

    Google Scholar 

  470. Heibig, A. Error estimates for oscillatory solutions to hyperbolic systems of conservation laws. Comm. PDE 18 (1993), 281–304.

    MATH  MathSciNet  Google Scholar 

  471. Heibig, A. Existence and uniqueness of solutions for some hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 126 (1994), 79–101.

    Article  MATH  MathSciNet  Google Scholar 

  472. Heibig, A. and A. Sahel A method of characteristics for some systems of conservation laws. SIAM J. Math. Anal. 29 (1998), 1467–1480.

    Article  MathSciNet  Google Scholar 

  473. Heibig, A. and D. Serre Etude variationnelle du problème de Riemann. J. Diff. Eqs. 96 (1992), 56–88.

    Article  MathSciNet  Google Scholar 

  474. Heidrich, A. Global weak solutions to initial-boundary value problems for the one-dimensional quasi-linear wave equation with large data. Arch. Rational Mech. Anal. 126 (1994), 333–368.

    Article  MATH  MathSciNet  Google Scholar 

  475. Helmholtz, H.V. On discontinuous movements of fluids. Phil. Mag., Ser. 4, 36 (1868), 337–346.

    Google Scholar 

  476. Higdon, R.L. Initial-boundary value problems for linear hyperbolic systems. SIAM Review 28 (1986), 177–217.

    Article  MATH  MathSciNet  Google Scholar 

  477. Hoff, D. The sharp form of Oleinik’s entropy condition in several space variables. Trans. AMS 276 (1983), 707–714.

    MATH  MathSciNet  Google Scholar 

  478. Hoff, D. Invariant regions for systems of conservation laws. Trans. AMS 289 (1985), 591–610.

    MATH  MathSciNet  Google Scholar 

  479. Hoff, D. and M. Khodja Stability of coexisting phases for compressible van der Waals fluids. SIAM J. Appl. Math. 53 (1993), 1–14.

    Article  MathSciNet  Google Scholar 

  480. Hoff, D. and Tai-Ping Liu The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data. Indiana U. Math. J. 38 (1989), 861–915.

    MathSciNet  Google Scholar 

  481. Hoff, D. and J.A. Smoller Error bounds for Glimm difference approximations for scalar conservation laws. Trans. AMS 289 (1985), 611–645.

    MathSciNet  Google Scholar 

  482. Holden, H. On the Riemann problem for a prototype of a mixed type conservation law. Comm. Pure Appl. Math. 40 (1987), 229–264.

    MATH  MathSciNet  Google Scholar 

  483. Holden, H. and L. Holden First order nonlinear scalar hyperbolic conservation laws in one dimension. Ideas and Methods in Mathematical Analysis, Stochastics and Applications, pp. 480–510, eds. S. Albeveiro, J.E. Fenstad, H. Holden and T. Lindstrøm. Cambridge: Cambridge U. Press, 1992.

    Google Scholar 

  484. Holden, H., Holden, L. and R. Høegh-Krohn A numerical method for first order nonlinear scalar hyperbolic conservation laws in one dimension. Computers and Maths. with Appl. 15 (1988), 595–602.

    Google Scholar 

  485. Holden, H. and N.H. Risebro A method of fractional steps for scalar conservation laws without the CFL condition. Math. in Comp. 60 (1993), 221–232.

    MathSciNet  Google Scholar 

  486. Holden, H. and N.H. Risebro Front Tracking for Hyperbolic Conservation Laws. New York: Springer, 2002.

    Google Scholar 

  487. Holden, H., Risebro, N.H. and A. Tveito Maximum principles for a class of conservation laws. SIAM J. Appl. Math. 55 (1995), 651–661.

    Article  MathSciNet  Google Scholar 

  488. Hölder, E. Historischer Überblick zur mathematischen Theorie von Unstetigkeitswellen seit Riemann und Christoffel. E.B. Christoffel, pp. 412–434, ed. P.L. Butzer and F. Fehér. Basel: Birkhäuser 1981.

    Google Scholar 

  489. Hong, John and B. Temple A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law. SIAM J. Appl. Math. 64 (2004), 819–857.

    Article  MathSciNet  Google Scholar 

  490. Hopf, E. The partial differential equation u t + uu x = μu xx . Comm. Pure Appl. Math. 3 (1950), 201–230.

    MATH  MathSciNet  Google Scholar 

  491. Hörmander, L. The lifespan of classical solutions of non-linear hyperbolic equations. Lecture Notes in Math. No. 1256 (1987), 214–280.

    Google Scholar 

  492. Hörmander, L. Lectures on Nonlinear Hyperbolic Differential Equations. Paris: Springer, 1997.

    Google Scholar 

  493. Hou, Thomas and E. Tadmor Hyperbolic Problems.. Berlin: Springer, 2003.

    Google Scholar 

  494. Hsiao, Ling (Ling Xiao) The entropy rate admissibility criterion in gas dynamics. J. Diff. Eqs. 38 (1980), 226–238.

    Article  MATH  MathSciNet  Google Scholar 

  495. Hsiao, Ling (Ling Xiao) Uniqueness of admissible solutions of the Riemann problem for a system of conservation laws of mixed type. J. Diff. Eqs. 86 (1990), 197–233.

    Article  MATH  MathSciNet  Google Scholar 

  496. Hsiao, Ling (Ling Xiao) Quasilinear Hyperbolic Systems and Dissipative Mechanisms. Singapore: World Scientific, 1997.

    Google Scholar 

  497. Hsiao, Ling and Tong Chang Perturbations of the Riemann problem in gas dynamics. J. Math. Anal. Appl. 79 (1981), 436–460.

    Article  MathSciNet  Google Scholar 

  498. Hsiao, Ling and P. DeMottoni Existence and uniqueness of the Riemann problem for a nonlinear system of conservation laws of mixed type. Trans. AMS 322 (1990), 121–158.

    Google Scholar 

  499. Hsiao, Ling and Hailiang Li Initial boundary value problems for nonconvex hyperbolic conservation laws with relaxation. Meth. Appl. Anal. 7 (2000), 1–19.

    MathSciNet  Google Scholar 

  500. Hsiao, Ling and Hailiang Li Shock reflection for the damped p-system. Quart. Appl. Math. 60 (2002), 437–460.

    MathSciNet  Google Scholar 

  501. Hsiao, Ling, Li, Hailiang and Ronghua Pan The zero relaxation behavior of piecewise smooth solutions to the reacting flow model in the presence of shocks. Nonlin. Anal. 42 (2000), 905–929.

    Article  MathSciNet  Google Scholar 

  502. Hsiao, Ling and Tai-Ping Liu Convergence of nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Comm. Math. Phys. 143 (1992), 599–605.

    Article  MathSciNet  Google Scholar 

  503. Hsiao, Ling and Ronghua Pan Zero relaxation limit to centered rarefaction waves for a rate-type viscoelastic system. J. Diff. Eqs. 157 (1999), 20–40.

    Article  MathSciNet  Google Scholar 

  504. Hsiao, Ling and Ronghua Pan Initial boundary value problem for the system of compressible adiabatic flow through porous media. J. Diff. Eqs. 159 (1999), 280–305.

    Article  MathSciNet  Google Scholar 

  505. Hsiao, Ling and Ronghua Pan The damped p-system with boundary effects. Contemp. Math. 255 (2000), 109–123.

    MathSciNet  Google Scholar 

  506. Hsiao, Ling and Song Jiang Nonlinear hyperbolic-parabolic coupled systems. Handbook of Differential Equations. Evolutionary Equations. Vol. I, pp. 287–384, ed. C.M. Dafermos and E. Feireisl. Amsterdam: Elsevier 2004.

    Google Scholar 

  507. Hsiao, Ling, Luo, Tao and Tong Yang Global BV solutions of compressible Euler equations with spherical symmetry and damping. J. Diff. Eqs. 146 (1998), 203–225.

    Article  MathSciNet  Google Scholar 

  508. Hsiao, Ling and Zhang Tung Riemann problem for 2 × 2 quasilinear hyperbolic system without convexity. Ke Xue Tong Bao 8 (1978), 465–469.

    Google Scholar 

  509. Hu, Jiaxin and P.G. LeFloch L1 continuous dependence property for systems of conservation laws. Arch. Rational Mech. Anal. 151 (2000), 45–93.

    Article  Google Scholar 

  510. Huang, Feimin Existence and uniqueness of discontinuous solutions for a hyperbolic system. Proc. Royal Soc. Edinburgh, 127A (1997), 1193–1205.

    Google Scholar 

  511. Huang, Feimin and Ronghua Pan Convergence rate for compressible Euler equations with damping and vacuum. Arch. Rat. Mech. Analysis 166 (2003), 359–376.

    MathSciNet  Google Scholar 

  512. Huang, Feimin and Ronghua Pan Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum. (Preprint).

    Google Scholar 

  513. Huang, Feimin and Ronghua Pan Nonlinear diffusive phenomena for compressible Euler equations with damping and vacuum. (Preprint).

    Google Scholar 

  514. Huang, Feimin and Zhen Wang Well posedness for pressureless flow. Comm. Math. Phys. 222 (2001), 117–146.

    Article  MathSciNet  Google Scholar 

  515. Huang, Feimin and Zhen Wang Convergence of viscosity solutions for isothermal gas dynamics. SIAM J. Math. Anal. 34 (2002), 595–610.

    MathSciNet  Google Scholar 

  516. Hubert, F. and D. Serre Fast-slow dynamics for parabolic perturbations of conservation laws. Comm. PDE 21 (1996), 1587–1608.

    MathSciNet  Google Scholar 

  517. Hughes, T.J.R., Kato, T. and J.E. Marsden Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal. 63 (1977), 273–294.

    Article  MathSciNet  Google Scholar 

  518. Hugoniot, H. Sur un théorème général relatf à la propagation du mouvement dans les corps. C.R. Acad. Sci. Paris, Série I 102 (1886), 858–860.

    Google Scholar 

  519. Hugoniot, H. Sur la propagation du movement dans les corps et spécialement dans les gaz parfaits, I;II. J. Ecole Polytechnique 57 (1887), 3–97; 58 (1889), 1–125.

    MATH  Google Scholar 

  520. Hunter, J. Interaction of elastic waves. Stud. Appl. Math. 86 (1992), 281–314.

    MATH  MathSciNet  Google Scholar 

  521. Hunter, J.K., and J.B. Keller Weakly nonlinear high frequency waves. Comm. Pure Appl. Math. 36 (1983), 547–569.

    MathSciNet  Google Scholar 

  522. Hunter, J.K., and J.B. Keller Nonlinear hyperbolic waves. Proc. Royal Soc. London 417A (1988), 299–308.

    MathSciNet  Google Scholar 

  523. Hwang, Seok and A.E. Tzavaras Kinetic decomposition of approximate solutions to conservation laws: application to relaxation and diffusion-dispersion approximations. Comm. PDE 27 (2002), 1229–1254.

    MathSciNet  Google Scholar 

  524. Iguchi, Tatsuo and P.G. LeFloch Existence theory for hyperbolic systems of conservation laws with general flux functions. Arch. Rational Mech. Anal. 168 (2003), 165–244.

    Google Scholar 

  525. Ilin, A.M. and O.A. Oleinik Behavior of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time. Dokl. Akad. Nauk SSSR 120 (1958), 25–28. English translation: AMS Translations, Ser. II, 42, 19–23.

    MathSciNet  Google Scholar 

  526. Isaacson, E.L., Marchesin, D. and B. Plohr Transitional waves for conservation laws. SIAM J. Math. Anal. 21 (1990), 837–866.

    Article  MathSciNet  Google Scholar 

  527. Isaacson, E.L., Marchesin, D., Plohr, B. and J.B. Temple The Riemann problem near a hyperbolic singularity: The classification of quadratic Riemann problems I. SIAM J. Appl. Math. 48 (1988), 1009–1032.

    MathSciNet  Google Scholar 

  528. Isaacson, E.L. and J.B. Temple Analysis of a singular hyperbolic system of conservation laws. J. Diff. Eqs. 65 (1986), 250–268.

    Article  MathSciNet  Google Scholar 

  529. Isaacson, E.L. and J.B. Temple The Riemann problem near a hyperbolic singularity I;II. SIAM J. Appl. Math. 48 (1988), 1287–1301; 1302–1318.

    MathSciNet  Google Scholar 

  530. Isaacson, E.L. and J.B. Temple The structure of asymptotic states in a singular system of conservation laws. Adv. in Appl. Math. 11 (1990), 205–219.

    Article  MathSciNet  Google Scholar 

  531. Isaacson, E.L. and J.B. Temple Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992), 1260–1278.

    Article  MathSciNet  Google Scholar 

  532. Izumiya, Shyuichi and G.T. Kossioris Geometric singularities for solutions of single conservation laws. Arch. Rational Mech. Anal. 139 (1997), 255–290.

    Article  MathSciNet  Google Scholar 

  533. Jacobs, D., MacKinney, W. and M. Shearer Traveling wave solutions of the modified Korteweg-De-Vries Burgers equation. J. Diff. Eqs. 116 (1995), 448–467.

    Article  Google Scholar 

  534. James, F., Peng, Yue-Jun and B. Perthame Kinetic formulation for chromatography and some other hyperbolic systems. J. Math. Pures Appl. 74 (1995), 367–385.

    MathSciNet  Google Scholar 

  535. James, R.D. The propagation of phase boundaries in elastic bars. Arch. Rational Mech. Anal. 73 (1980), 125–158.

    Article  MATH  MathSciNet  Google Scholar 

  536. Jeffrey, A. Magnetohydrodynamics. Edinburgh: Oliver and Boyd, 1966.

    Google Scholar 

  537. Jeffrey, A. Quasilinear Hyperbolic Systems and Waves. London: Pitman, 1976.

    Google Scholar 

  538. Jenssen, H.K. Blowup for systems of conservation laws. SIAM J. Math. Anal. 31 (2000), 894–908.

    Article  MATH  MathSciNet  Google Scholar 

  539. Jenssen, H.K. and C. Sinestrari On the spreading of characteristics for non-convex conservation laws. Proc. Roy. Soc. Edinburgh A131 (2001), 909–925.

    MathSciNet  Google Scholar 

  540. Jin, Shi and Zhou Ping Xin The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48 (1995), 235–276.

    MathSciNet  Google Scholar 

  541. John, F. Formation of singularities in one-dimensional nonlinear wave propagation. Comm. Pure Appl. Math. 27 (1974), 377–405.

    MATH  MathSciNet  Google Scholar 

  542. John, F. Blow-up for quasilinear wave equations in three space dimensions. Comm. Pure Appl. Math. 34 (1981), 29–53.

    MATH  MathSciNet  Google Scholar 

  543. Johnson, J.N. and R. Chéret Classic_Papers in Shock Compression Science. New York: Springer, 1998.

    Google Scholar 

  544. Joly, J.-L., Métivier, G. and J. Rauch Resonant one-dimensional nonlinear geometric optics. J. Funct. Anal. 114 (1993), 106–231.

    Article  MathSciNet  Google Scholar 

  545. Joly, J.-L., Métivier, G. and J. Rauch A nonlinear instability for 3 × 3 systems of conservation laws. Comm. Math. Phys. 162 (1994), 47–59.

    MathSciNet  Google Scholar 

  546. Joly, J.-L., Métivier, G. and J. Rauch Coherent and focusing multi-dimensional nonlinear geometric optics. Ann. Sci. ENS 28 (1995), 51–113.

    Google Scholar 

  547. Joseph, K.T. A Riemann problem whose viscosity solutions contain delta measures. Asymptotic Analysis 7 (1993), 105–120.

    MATH  MathSciNet  Google Scholar 

  548. Joseph, K.T. and P.G. LeFloch Boundary layers in weak solutions of hyperbolic conservation laws. Arch. Rational Mech. Anal. 147 (1999), 47–88.

    Article  Google Scholar 

  549. Joseph, K.T. and P.G. LeFloch Boundary layers in weak solutions of hyperbolic conservation laws II. Commun. Pure Appl. Anal. 1 (2002), 51–76.

    MathSciNet  Google Scholar 

  550. Joseph, K.T. and P.G. LeFloch Boundary layers in weak solutions of hyperbolic conservation laws III. Port. Math. (N.S.) 59 (2002), 453–494.

    MathSciNet  Google Scholar 

  551. Joseph, K.T. and P.G. LeFloch Singular limits for the Riemann problem: General diffusion, relaxation and boundary conditions. New Analytical Approach to Multidimensional Balance Laws, ed. O. Rozanova. Nova Press, 2004.

    Google Scholar 

  552. Jouguet, E. Sur la propagation des discontinuités dans les fluides. C. R. Acad. Sci. Paris 132 (1901), 673–676.

    MATH  Google Scholar 

  553. Kalašnikov, A.S. Construction of generalized solutions of quasi-linear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter. Dokl. Akad. Nauk SSSR 127 (1959), 27–30.

    MathSciNet  Google Scholar 

  554. Kan, Pui Tak Hyperbolic conservation laws: Global solutions to systems with umbilic degeneracy and initial boundary value problems in L. Analysis of Systems of Conservation Laws, pp. 49–86, ed. H. Freistühler. London: Chapman and Hall/CRC, 1998.

    Google Scholar 

  555. Kan, Pui Tak, Santos, M.M. and Zhou Ping Xin Initial-boundary value problem for conservation laws. Comm. Math. Phys. 186 (1997), 701–730.

    Article  MathSciNet  Google Scholar 

  556. Kato, T. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58 (1975), 181–205.

    Article  MATH  MathSciNet  Google Scholar 

  557. Katsoulakis, M.A. and A.E. Tzavaras Contractive relaxation systems and the scalar multidimensional conservation law. Comm. PDE 22 (1997), 195–233.

    MathSciNet  Google Scholar 

  558. Kawashima, S. and A. Matsumura Stability of shock profiles in viscoelasticity with non-convex constitutive relations. Comm. Pure Appl. Math. 47 (1994), 1547–1569.

    MathSciNet  Google Scholar 

  559. Kawashima, S. and Wen-An Yong Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172 (2004), 247–266.

    MathSciNet  Google Scholar 

  560. Kawashima, S. and Wen-An Yong Dissipative structure and entropy for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 174 (2004), 345–364.

    Article  MathSciNet  Google Scholar 

  561. Keyfitz, B.L. Change of type in three-phase flow: A simple analogue. J. Diff. Eqs. 80 (1989), 280–305.

    MATH  MathSciNet  Google Scholar 

  562. Keyfitz, B.L. Admissibility conditions for shocks in systems that change type. SIAM J. Math. Anal. 22 (1991), 1284–1292.

    Article  MATH  MathSciNet  Google Scholar 

  563. Keyfitz, B.L. Self-similar solutions of two-dimensional conservation laws. J. Hyperbolic Diff. Eqs. 1 (2004), 445–492.

    MATH  MathSciNet  Google Scholar 

  564. Keyfitz, B.L. and H.C. Kranzer Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws. J. Diff. Eqs. 27 (1978), 444–476.

    Article  MathSciNet  Google Scholar 

  565. Keyfitz, B.L. and H.C. Kranzer A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal. 72 (1980), 219–241.

    Article  MathSciNet  Google Scholar 

  566. Keyfitz, B.L. and H.C. Kranzer A viscosity approximation to a system of conservation laws with no classical Riemann solution. Lecture Notes in Math. No. 1402 (1989), 185–197. Berlin: Springer.

    Google Scholar 

  567. Keyfitz, B.L. and H.C. Kranzer Spaces of weighted measures for conservation laws with singular shock solutions. J. Diff. Eqs. 118 (1995), 420–451.

    Article  MathSciNet  Google Scholar 

  568. Keyfitz, B.L. and G.G. Warnecke The existence of viscous profiles and admissibility of transonic shocks. Comm. PDE 16 (1991), 1197–1221.

    MathSciNet  Google Scholar 

  569. Kim, Jong Uhn On a stochastic scalar conservation law. Indiana U. Math. J. 52 (2003), 227–256.

    MATH  Google Scholar 

  570. Kim, Yong Jung A self-similar viscosity approach for the Riemann problem in isentropic gas dynamics and the structure of the solutions. Quart. Appl. Math. 59 (2001), 637–665.

    MATH  MathSciNet  Google Scholar 

  571. Kim, Yong Jung Asymptotic behavior of solutions to scalar conservation laws and optimal convergence orders to N-waves. J. Diff. Eqs. 192 (2003), 202–224.

    Article  MATH  Google Scholar 

  572. Kim, Yong Jung and A.E. Tzavaras Diffusive N-waves and metastability in the Burgers equation. SIAM J. Math. Anal. 33 (2001), 607–633.

    Article  MathSciNet  Google Scholar 

  573. Kirchhoff, G. Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Ann. Physik 134 (1868), 177–193.

    Google Scholar 

  574. Klainerman, S. The null condition and global existence to nonlinear wave equations. Lectures in Appl. Math. 23 (1986), 293–326. Providence: AMS.

    Google Scholar 

  575. Klainerman, S. and A. Majda Formation of singularities for wave equations including the nonlinar vibrating string. Comm. Pure Appl. Math. 33 (1980), 241–263.

    MathSciNet  Google Scholar 

  576. Klingenberg, C. and Yun-Guang Lu Cauchy problem for hyperbolic conservation laws with a relaxation term. Proc. Royal Soc. Edinburgh, 126A (1996), 821–828.

    MathSciNet  Google Scholar 

  577. Klingenberg, C. and N.H. Risebro Convex conservation law with discontinuous coefficients. Comm. PDE 20 (1995), 1959–1990.

    MathSciNet  Google Scholar 

  578. Klingenberg, C. and N.H. Risebro Stability of a resonant system of conservation laws modeling polymer flow with gravitation. J. Diff. Eqs. 170 (2001), 344–380.

    Article  MathSciNet  Google Scholar 

  579. Kohler, M. Behandlung von Nichtgleichgewichtsvorgängen mit Hilfe eines Extremal-prinzipes. Zeit. Physik 124 (1948), 772–789.

    MATH  MathSciNet  Google Scholar 

  580. Kondo, C.I. and P.G. LeFloch Measure-valued solutions and well-posedness of multi-dimensional conservation laws in a bounded domain. Port. Math. (N.S.) 58 (2001), 171–193.

    MathSciNet  Google Scholar 

  581. Kondo, C.I. and P.G. LeFloch Zero diffusion-dispersion limit for scalar conservation laws. SIAM J. Math. Anal. 33 (2002), 1320–1329.

    Article  MathSciNet  Google Scholar 

  582. Kreiss, H.O. Initial-boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23 (1970), 277–298.

    MATH  MathSciNet  Google Scholar 

  583. Krejčí, P. and I. Straškraba A uniqueness criterion for the Riemann problem. Hiroshima Math. J. 27 (1997), 307–346.

    MathSciNet  Google Scholar 

  584. Kröner, D. Numerical Schemes for Conservation Laws. Chichester: John Wiley, 1997.

    Google Scholar 

  585. Kruzkov, S. First-order quasilinear equations with several space variables. Mat. Sbornik 123 (1970), 228–255. English translation: Math. USSR Sbornik 10 (1970), 217-273.

    MathSciNet  Google Scholar 

  586. Kuznetsov, N. Weak solutions of the Cauchy problem for a multi-dimensional quasilinear equation. Mat. Zam. 2 (1967), 401–410. English translation: Math. Notes Acad. USSR 2 (1967), 733-739.

    MATH  Google Scholar 

  587. Lagrange, J.L. Mémoire sur la théorie des mouvements des fluides. Oeuvres IV (1781), 743–

    Google Scholar 

  588. Lan, Chiu-Ya and Huey-Er Lin Wave patterns for shallow water equations. Quart. Appl. Math. 63 (2005), 225–250.

    MathSciNet  Google Scholar 

  589. Landau, L.D. On shock waves at large distances from their place of origin. J. Phys. USSR 9 (1945), 495–500.

    Google Scholar 

  590. Lattanzio, C. and P. Marcati The zero relaxation limit for the hydrodynamic Whitham traffic flow model. J. Diff. Eqs. 141 (1997), 150–178.

    Article  MathSciNet  Google Scholar 

  591. Lattanzio, C. and P. Marcati The zero relaxation limit for 2 × 2 hyperbolic systems. Nonlin. Anal. 38 (1999), 375–389.

    Article  MathSciNet  Google Scholar 

  592. Lattanzio, C. and B. Rubino Asymptotic behavior and strong convergence for hyperbolic systems of conservation laws with damping. Quart. Appl. Math. 62 (2004), 529–540.

    MathSciNet  Google Scholar 

  593. Lattanzio, C. and D. Serre Shock layers interactions for a relaxation approximation to conservation laws. NoDEA Nonlinear Differential Equations Appl. 6 (1999), 319–340.

    MathSciNet  Google Scholar 

  594. Lattanzio, C. and D. Serre Convergence of a relaxation scheme for hyperbolic systems of conservation laws. Numer. Math. 88 (2001), 121–134.

    MathSciNet  Google Scholar 

  595. Lattanzio C. and A.E. Tzavaras Structural properties for hyperbolic relaxation: from viscoelasticity with memory to polyconvex elastodynamics. Arch. Rational Mech. Anal. (To appear).

    Google Scholar 

  596. Lax, P.D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7 (1954), 159–193.

    MATH  MathSciNet  Google Scholar 

  597. Lax, P.D. Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10 (1957), 537–566.

    MATH  MathSciNet  Google Scholar 

  598. Lax, P.D. Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5 (1964), 611–613.

    Article  MATH  MathSciNet  Google Scholar 

  599. Lax, P.D. Shock waves and entropy. Contributions to Functional Analysis pp. 603–634, ed. E.A. Zarantonello. New York: Academic Press, 1971.

    Google Scholar 

  600. Lax, P.D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. CBMS Regional Conference Series in Mathematics No. 11. Philadelphia: SIAM, 1973.

    Google Scholar 

  601. Lax, P.D. The multiplicity of eigenvalues. Bull. AMS (New Series) 6 (1982), 213–214.

    MATH  MathSciNet  Google Scholar 

  602. LeFloch, P.G. Explicit formula for scalar non-linear conservation laws with boundary conditions. Math. Meth. Appl. Sci. 10 (1988), 265–287.

    MATH  Google Scholar 

  603. LeFloch, P.G. Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. PDE 13 (1988), 669–727.

    MATH  Google Scholar 

  604. LeFloch, P.G. Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme. Arch. Rational Mech. Anal. 123 (1993), 153–197.

    Article  MATH  MathSciNet  Google Scholar 

  605. LeFloch, P.G. An introduction to nonclassical shocks of systems of conservation laws. An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp. 28–72, eds. D. Kröner, N. Ohlberger and C. Rohde. Berlin: Springer, 1999.

    Google Scholar 

  606. LeFloch, P.G. Hyperbolic Systems of Conservation Laws. Basel: Birkhäuser, 2002.

    Google Scholar 

  607. LeFloch, P.G. Graph solutions of nonlinear hyperbolic systems. J. Hyperbolic Diff. Eqs. 1 (2004), 643–689.

    MATH  Google Scholar 

  608. LeFloch, P.G. and Tai-Ping Liu Existence theory for nonconservative hyperbolic systems. Forum Math. 5 (1993), 261–280.

    MathSciNet  Google Scholar 

  609. LeFloch, P.G. and Roberto Natalini Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal. 36 (1999), 213–230.

    MathSciNet  Google Scholar 

  610. LeFloch, P.G. and J.-C. Nédélec Explicit formula for weighted scalar nonlinear hyperbolic conservation laws. Trans. AMS 308 (1988), 667–683.

    Google Scholar 

  611. LeFloch, P.G. and C. Rohde Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws. Indiana U. Math. J. 50 (2001), 1707–1743.

    Google Scholar 

  612. LeFloch, P.G. and M. Shearer Nonclassical Riemann solvers with nucleation. Proc. Royal Soc. Edinburgh 134A (2004), 961–984.

    Google Scholar 

  613. LeFloch, P.G. and V. Shelukhin Symmetries and local solvability of the isothermal gas dynamics equations. Arch. Rational Mech. Anal. 175 (2005), 389–430.

    Google Scholar 

  614. LeFloch, P.G. and Mai Duc Thanh Nonclassical Riemann solvers and kinetic relations I;II. ZAMP 52 (2001), 597–619; Proc. Royal Soc. Edinburgh 132A (2002), 181-219.

    Google Scholar 

  615. LeFloch, P.G. and Mai Duc Thanh The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Comm. Math. Sci. 1 (2003), 763–797.

    Google Scholar 

  616. LeFloch, P.G. and K. Trivisa Continuous Glimm-type functionals and spreading of rarefaction waves. Comm. Math. Sci. 2 (2004), 213–236.

    Google Scholar 

  617. LeFloch, P.G. and A.E. Tzavaras Existence theory for the Riemann problem for nonconservative hyperbolic systems. C. R. Acad. Sci. Paris, Sér. I, 323 (1996), 347–352.

    Google Scholar 

  618. LeFloch, P.G. and A.E. Tzavaras Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30 (1999), 1309–1342.

    MathSciNet  Google Scholar 

  619. LeFloch, P.G. and Zhou Ping Xin Uniqueness via the adjoint problems for systems of conservation laws. Comm. Pure Appl. Math. 46 (1993), 1499–1533.

    MathSciNet  Google Scholar 

  620. Leibovich, L. Solutions of the Riemann problem for hyperbolic systems of quasilinear equations without convexity conditions. J. Math. Anal. Appl. 45 (1974), 81–90.

    Article  MATH  MathSciNet  Google Scholar 

  621. LeVeque, R.J. Numerical Methods for Conservation Laws. (Second Edition). Basel: Birkhauser, 1992.

    Google Scholar 

  622. LeVeque, R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge U. Press, 2002.

    Google Scholar 

  623. LeVeque, R.J. and B. Temple Convergence of Godunov’s method for a class of 2 × 2 systems of conservation laws. Trans. AMS 288 (1985), 115–123.

    Google Scholar 

  624. Lewicka, M. L1 stability of patterns of non-interacting large shock waves. Indiana U. Math. J. 49 (2000), 1515–1537.

    MATH  MathSciNet  Google Scholar 

  625. Lewicka, M. Stability conditions for patterns of non-interacting large shock waves. SIAM J. Math. Anal. 32 (2001), 1094–1116.

    Article  MATH  MathSciNet  Google Scholar 

  626. Lewicka, M. Lyapunov functional for solutions of systems of conservation laws containing a strong rarefaction. SIAM J. Math. Anal. 36 (2005), 1371–1399.

    MATH  MathSciNet  Google Scholar 

  627. Lewicka, M. Stability conditions for strong rarefaction waves. SIAM J. Math. Anal. 36 (2005), 1346–1369.

    MATH  MathSciNet  Google Scholar 

  628. Lewicka, M. Well-posedness for hyperbolic systems of conservation laws with large BV data. Arch. Rational Mech. Anal. 173 (2004), 415–445.

    Article  MATH  MathSciNet  Google Scholar 

  629. Lewicka, M. and K. Trivisa On the L1 well-posedness of systems of conservation laws near solutions containing two large shocks. J. Diff. Eqs. 179 (2002), 133–177.

    Article  MathSciNet  Google Scholar 

  630. Li, Cai Zhong and Tai-Ping Liu Asymptotic states for hyperbolic conservation laws with a moving source. Adv. in Appl. Math. 4 (1983), 353–379.

    Article  MathSciNet  Google Scholar 

  631. Li, Hailiang and Ronghua Pan Zero relaxation limit for piecewise smooth solutions to a rate-type viscoelastic system in the presence of shocks. J. Math. Anal. Appl. 252 (2000), 298–324.

    MathSciNet  Google Scholar 

  632. Li, Jiequan and G. Warnecke Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics. Adv. Differential Equations 8 (2003), 961–1004.

    MathSciNet  Google Scholar 

  633. Li, Jiequan and Hanchun Yang Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics. Quart. Appl. Math. 59 (2001), 315–342.

    MathSciNet  Google Scholar 

  634. Li, Jiequan, Zhang, Tong and Shuli Yang The Two-Dimensional Riemann Problem in Gas Dynamics. Harlow: Longman, 1998.

    Google Scholar 

  635. Li, Ta-tsien Global Classical Solutions for Quasilinear Hyperbolic Systems. New York: Wiley, 1994.

    Google Scholar 

  636. Li, Ta-tsien and De-xing Kong Explosion des solutions régulières pour les systèmes hyperbolique quasilinéaires. C.R. Acad. Sci. Paris, Sér. I, 329 (1999), 287–292.

    MathSciNet  Google Scholar 

  637. Li, Ta-tsien and Wen-ci Yu Boundary Value Problems for Quasilinear Hyperbolic Systems. Durham: Duke University Math. Series V, 1985.

    Google Scholar 

  638. Li, Ta-tsien, Zhou, Yi and De-xing Kong Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems. Comm. PDE, 19 (1994), 1263–1317.

    MathSciNet  Google Scholar 

  639. Li, Tong Global solutions and zero relaxation limit for a traffic flow model. SIAM J. Appl. Math. 61 (2000), 1042–1061.

    Article  MATH  MathSciNet  Google Scholar 

  640. Li, Tong Well-posedness theory of an inhomogeneous traffic flow model. Discrete Cont. Dynam. Systems B2 (2002), 401–414.

    Google Scholar 

  641. Lien, Wen-Ching Hyperbolic conservation laws with a moving source. Comm. Pure Appl. Math. 52 (1999), 1075–1098.

    Article  MATH  MathSciNet  Google Scholar 

  642. Lien, Wen-Ching and Tai-Ping Liu Nonlinear stability of a self-similar 3-dimensional gas flow. Comm. Math. Phys. 204 (1999), 525–549.

    Article  MathSciNet  Google Scholar 

  643. Lighthill, M.J. A method for rendering approximate solutions to physical problems uniformly valid. Philos. Magazine 40 (1949), 1179–1201.

    MATH  MathSciNet  Google Scholar 

  644. Lighthill, M.J. and G.B. Whitham On kinematic waves. II. Theory of traffic flow on long crowded roads. Proc. Royal Soc. London 229A (1955), 317–345.

    MathSciNet  Google Scholar 

  645. Lin, Long-Wei On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl. 121 (1987), 406–425.

    Article  MATH  MathSciNet  Google Scholar 

  646. Lin, Long-Wei and Tong Yang Convergence of the viscosity method for the system of isentropic gas dynamics in Lagrangian coordinates. J. Diff. Eqs. 102 (1993), 330–341.

    Article  MathSciNet  Google Scholar 

  647. Lin, Peixiong Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics. Trans. AMS 329 (1992), 377–413.

    MATH  Google Scholar 

  648. Lin, Xiao-Biao Generalized Rankine-Hugoniot condition and shock solutions for quasilinear hyperbolic systems. J. Diff. Eqs. 168 (2000), 321–354.

    Article  MATH  Google Scholar 

  649. Lin, Xiao-Biao and S. Schecter Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws. SIAM J. Math. Anal. 35 (2003), 884–921.

    MathSciNet  Google Scholar 

  650. Lindquist, W.B. The scalar Riemann problem in two spatial dimensions: Piecewise smoothness of solutions. SIAM J. Math. Anal. 17 (1986), 1178–1197.

    Article  MATH  MathSciNet  Google Scholar 

  651. Lions, P.-L. Generalized Solutions of Hamilton-Jacobi Equations. London: Pitman, 1982.

    Google Scholar 

  652. Lions, P.-L. Mathematical Topics in Fluid Mechanics Vols. I-II. Oxford: Oxford University Press, 1996–1998.

    Google Scholar 

  653. Lions, P.-L., Perthame, B. and P.E. Souganidis Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49 (1996), 599–638.

    Article  MathSciNet  Google Scholar 

  654. Lions, P.-L., Perthame, B. and E. Tadmor Kinetic formulation for the isentropic gas dynamics and p-systems. Comm. Math. Phys. 163 (1994), 415–431.

    Article  MathSciNet  Google Scholar 

  655. Lions, P.-L., Perthame, B. and E. Tadmor A kinetic formulation of multidimensional scalar conservation laws and related equations. J. AMS 7 (1994), 169–191.

    MathSciNet  Google Scholar 

  656. Liu, Hailiang and R. Natalini Long-time diffusive behavior of solutions to a hyperbolic relaxation system. Asymptot. Anal. 25 (2001), 21–38.

    MathSciNet  Google Scholar 

  657. Liu, Tai-Ping The Riemann problem for general system of conservation laws. J. Diff. Eqs. 18 (1975), 218–234.

    Article  MATH  Google Scholar 

  658. Liu, Tai-Ping The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53 (1976), 78–88.

    Article  MATH  MathSciNet  Google Scholar 

  659. Liu, Tai-Ping Uniqueness of weak solutions of the Cauchy problem for general 2 × 2 conservation laws. J. Diff. Eqs. 20 (1976), 369–388.

    Article  MATH  Google Scholar 

  660. Liu, Tai-Ping Shock waves in the nonisentropic gas flow. J. Diff. Eqs. 22 (1976), 442–452.

    Article  MATH  Google Scholar 

  661. Liu, Tai-Ping Solutions in the large for the equations of nonisentropic gas dynamics. Indiana U. Math. J. 26 (1977), 147–177.

    MATH  Google Scholar 

  662. Liu, Tai-Ping Large time behavior of solutions of initial and initial-boundary value problems of a general system of hyperbolic conservation laws. Comm. Math. Phys. 55 (1977), 163–177.

    Article  MATH  MathSciNet  Google Scholar 

  663. Liu, Tai-Ping The deterministic version of the Glimm scheme. Comm. Math. Phys. 57 (1977), 135–148.

    Article  MATH  MathSciNet  Google Scholar 

  664. Liu, Tai-Ping Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws. Comm. Pure Appl. Math. 30 (1977), 585–610.

    MATH  Google Scholar 

  665. Liu, Tai-Ping Linear and nonlinear large-time behavior of solutions of hyperbolic conservation laws. Comm. Pure Appl. Math. 30 (1977), 767–796.

    MATH  MathSciNet  Google Scholar 

  666. Liu, Tai-Ping Initial-boundary value problems for gas dynamics. Arch. Rational Mech. Anal. 64 (1977), 137–168.

    MATH  MathSciNet  Google Scholar 

  667. Liu, Tai-Ping Asymptotic behavior of solutions of general systems of nonlinear hyperbolic conservation laws. Indiana U. Math. J. 27 (1978), 211–253.

    MATH  Google Scholar 

  668. Liu, Tai-Ping The free piston problem for gas dynamics. J. Diff. Eqs. 30 (1978), 175–191.

    Article  MATH  Google Scholar 

  669. Liu, Tai-Ping Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Diff. Eqs. 33 (1979), 92–111.

    Article  MATH  Google Scholar 

  670. Liu, Tai-Ping Quasilinear hyperbolic systems. Comm. Math. Phys. 68 (1979), 141–172.

    Article  MATH  MathSciNet  Google Scholar 

  671. Liu, Tai-Ping Admissible solutions of hyperbolic conservation laws. Memoirs AMS 30 (1981), No. 240.

    Google Scholar 

  672. Liu, Tai-Ping Nonlinear stability and instability of transonic flows through a nozzle. Comm. Math. Phys. 83 (1982), 243–260.

    Article  MATH  MathSciNet  Google Scholar 

  673. Liu, Tai-Ping Transonic gas flow in a duct of varying area. Arch. Rational Mech. Anal. 80 (1982), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  674. Liu, Tai-Ping Resonance for quasilinear hyperbolic equation. Bull. AMS 6 (1982), 463–465.

    MATH  Google Scholar 

  675. Liu, Tai-Ping Nonlinear stability of shock waves for viscous conservation laws. Memoirs AMS 56 (1985), No. 328.

    Google Scholar 

  676. Liu, Tai-Ping Shock waves for compressible Navier-Stokes equations are stable. Comm. Pure Appl. Math. 39 (1986), 565–594.

    MATH  MathSciNet  Google Scholar 

  677. Liu, Tai-Ping Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108 (1987), 153–175.

    Article  MATH  MathSciNet  Google Scholar 

  678. Liu, Tai-Ping Pointwise convergence to N-waves for solutions of hyperbolic conservation laws. Bull. Inst. Math. Acad. Sinica 15 (1987), 1–17.

    MATH  MathSciNet  Google Scholar 

  679. Liu, Tai-Ping Nonlinear resonance for quasilinear hyperbolic equation. J. Math. Phys. 28 (1987), 2593–2602.

    Article  MATH  MathSciNet  Google Scholar 

  680. Liu, Tai-Ping On the viscosity criterion for hyperbolic conservation laws. Viscous Profiles and Numerical Methods for ShockWaves, pp. 105–114, ed. M. Shearer. Philadelphia: SIAM, 1991.

    Google Scholar 

  681. Liu, Tai-Ping Compressible flow with damping and vacuum. Japan J. Indust. Appl. Math. 13 (1996), 25–32.

    MATH  MathSciNet  Google Scholar 

  682. Liu, Tai-Ping Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50 (1997), 1113–1182.

    Article  MATH  MathSciNet  Google Scholar 

  683. Liu, Tai-Ping Zero dissipation and stability of shocks. Methods Appl. Anal. 5 (1998), 81–94.

    MATH  MathSciNet  Google Scholar 

  684. Liu, Tai-Ping Hyperbolic and Viscous Conservation Laws. CBMS-NSF Regional Conference Series in Mathematics No. 72. Philadelphia: SIAM, 2000.

    Google Scholar 

  685. Liu, Tai-Ping, Matsumura, A. and K. Nishihara Behavior of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J. Math. Anal. 29 (1998), 293–308.

    MathSciNet  Google Scholar 

  686. Liu, Tai-Ping and K. Nishihara Asymptotic behavior of scalar viscous conservation laws with boundary effect. J. Diff. Eqs. 133 (1997), 296–320.

    Article  MathSciNet  Google Scholar 

  687. Liu, Tai-Ping and M. Pierre Source-solutions and asymptotic behavior in conservation laws. J. Diff. Eqs. 51 (1984), 419–441.

    Article  MathSciNet  Google Scholar 

  688. Liu, Tai-Ping and T. Ruggeri Entropy production and admissibility of shocks. Acta Math. Appl. Sin. 19 (2003), 1–12.

    MathSciNet  Google Scholar 

  689. Liu, Tai-Ping and J.A. Smoller On the vacuum state for the isentropic gas dynamics equations. Adv. in Appl. Math. 1 (1980), 345–359.

    Article  MathSciNet  Google Scholar 

  690. Liu, Tai-Ping and Ching-Hua Wang On a nonstrictly hyperbolic system of conservation laws. J. Diff. Eqs. 57 (1985), 1–14.

    Article  Google Scholar 

  691. Liu, Tai-Ping and Zhou Ping Xin Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys. 118 (1986), 451–465.

    MathSciNet  Google Scholar 

  692. Liu, Tai-Ping and Zhou Ping Xin Stability of viscous shock waves associated with a system of nonstrictly hyperbolic conservation laws. Comm. Pure Appl. Math. 45 (1992), 361–388.

    MathSciNet  Google Scholar 

  693. Liu, Tai-Ping and Zhou Ping Xin Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J. Math. 1 (1997), 34–84.

    MathSciNet  Google Scholar 

  694. Liu, Tai Ping and Tong Yang Compressible Euler equations with vacuum. J. Diff. Eqs. 140 (1997), 223–237.

    Article  MathSciNet  Google Scholar 

  695. Liu, Tai Ping and Tong Yang L1 stability of conservation laws with coinciding Hugoniot and characteristic curves. Indiana U. Math. J. 48 (1999), 237–247.

    MathSciNet  Google Scholar 

  696. Liu, Tai Ping and Tong Yang L1 stability of weak solutions for 2×2 systems of hyperbolic conservation laws. J. AMS 12 (1999), 729–774.

    MathSciNet  Google Scholar 

  697. Liu, Tai Ping and Tong Yang A new entropy functional for a scalar conservation laws. Comm. Pure Appl. Math. 52 (1999), 1427–1442.

    MathSciNet  Google Scholar 

  698. Liu, Tai Ping and Tong Yang Well-posedness theory for hyperbolic conservation laws. Comm. Pure Appl. Math. 52 (1999), 1553–1586.

    MathSciNet  Google Scholar 

  699. Liu, Tai Ping and Tong Yang Weak solutions of general systems of hyperbolic conservation laws. Comm. Math. Phys. 230 (2002), 289–327.

    Article  MathSciNet  Google Scholar 

  700. Liu, Tai Ping and Shih-Hsien Yu Propagation of a stationary shock layer in the presence of a boundary. Arch. Rational Mech. Anal. 139 (1997), 57–82.

    Article  MathSciNet  Google Scholar 

  701. Liu, Tai Ping and Shih-Hsien Yu Continuum shock profiles for discrete conservation laws. I;II. Comm. Pure Appl. Math. 52 (1999), 85–127; 1047–1073.

    MathSciNet  Google Scholar 

  702. Liu, Tai Ping and Shih-Hsien Yu Nonlinear stability of weak detonation waves for a combustion model. Comm. Math. Phys. 204 (1999), 551–586.

    Article  MathSciNet  Google Scholar 

  703. Liu, Tai Ping and Shih-Hsien Yu Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Comm. Math. Phys. 246 (2004), 133–179.

    Article  MathSciNet  Google Scholar 

  704. Liu, Tai Ping and Yanni Zeng Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservaton laws. Memoirs AMS 125 (1997), No. 549.

    Google Scholar 

  705. Liu, Tai Ping and Yanni Zeng Compressible Navier-Stokes equations with zero heat conductivity. J. Diff. Eqs. 153 (1999), 225–291.

    MathSciNet  Google Scholar 

  706. Liu, Tai Ping and Tong Zhang A scalar combustion model. Arch. Rational Mech. Anal. 114 (1991), 297–312.

    Article  MathSciNet  Google Scholar 

  707. Liu, Tai Ping and K. Zumbrun On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174 (1995), 319–345.

    MathSciNet  Google Scholar 

  708. Liu, Weishi Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete Contin. Dynam. Systems. 10 (2004), 871–884.

    MATH  Google Scholar 

  709. Lu, Yun-Guang Convergence of the viscosity method for some nonlinear hyperbolic systems. Proc. Royal Soc. Edinburgh 124A (1994), 341–352.

    Google Scholar 

  710. Lu, Yun-Guang Hyperbolic Conservation Laws and the Compensated Compactness Method. Boca Raton: Chapman & Hall/CRC, 2003.

    Google Scholar 

  711. Lu, Yun-Guang and C. Klingenberg The Cauchy problem for hyperbolic conservation laws with three equations. J. Math. Anal. Appl. 202 (1996), 206–216.

    Article  MathSciNet  Google Scholar 

  712. Lucier, B.J. A moving mesh numerical method for hyperbolic conservation laws. Math. Comput. 46 (1986), 59–69.

    MATH  MathSciNet  Google Scholar 

  713. Lucier, B.J. Regularity through approximation for scalar conservation laws. SIAM J. Math. Anal. 19 (1988), 763–773.

    Article  MathSciNet  Google Scholar 

  714. Luo, Tao Asymptotic stability of planar rarefaction waves for the relaxation approximation of conservation laws in several dimensions. J. Diff. Eqs. 133 (1997), 255–279.

    Article  MATH  Google Scholar 

  715. Luo, Tao and R. Natalini BV solutions and relaxation limit for a model in viscoelasticity. Proc. Royal Soc. Edinburgh 128A (1998), 775–795.

    MathSciNet  Google Scholar 

  716. Luo, Tao, R. Natalini, and Tong Yang Global BV solutions to a p-system with relaxation. J. Diff. Eqs. 162 (2000), 174–198.

    Article  MathSciNet  Google Scholar 

  717. Luo, Tao and D. Serre Linear stability of shock profiles for a rate-type viscoelastic system with relaxation. Quart. Appl. Math. 56 (1998), 569–586.

    MathSciNet  Google Scholar 

  718. Luo, Tao and Zhou Ping Xin Nonlinear stability of strong shocks for a relaxation system in several space dimensions. J. Diff. Eqs. 139 (1997), 365–408.

    Article  MathSciNet  Google Scholar 

  719. Luo, Tao and Tong Yang Interaction of elementary waves for compressible Euler equations with frictional damping. J. Diff. Eqs. 161 (2000), 42–86.

    Article  MathSciNet  Google Scholar 

  720. Luo, Tao and Tong Yang Global structure and asymptotic behavior of weak solutions to flood wave equations. J. Diff. Eqs. 207 (2004), 117–160.

    Article  MathSciNet  Google Scholar 

  721. Luskin, M. and B. Temple The existence of a global weak solution to the nonlinear waterhammer problem. Comm. Pure Appl. Math. 35 (1982), 697–735.

    MathSciNet  Google Scholar 

  722. Lyapidevskii, V. Yu. The continuous dependence on the initial conditions of the generalized solutions of the gas-dynamic system of equations. Zh. Vychisl. Mat. Mat. Fiz. 14 (1974), 982–991.

    MATH  Google Scholar 

  723. Lyberopoulos, A.N. Large-time structure of solutions of scalar conservation laws without convexity in the presence of a linear source field. J. Diff. Eqs. 99 (1992), 342–380.

    Article  MATH  MathSciNet  Google Scholar 

  724. Lyberopoulos, A.N. A Poincaré-Bendixson theorem for scalar balance laws. Proc. Royal Soc. Edinburgh 124A (1994), 589–607.

    MathSciNet  Google Scholar 

  725. Lyons, W.K. Conservation laws with sharp inhomogeneities. Quart. Appl. Math. 40 (1983), 385–393.

    MATH  MathSciNet  Google Scholar 

  726. Mailybaev, A.A. and D. Marchesin Dual-family viscous shock waves in systems of conservation laws: A surprising example. (Preprint).

    Google Scholar 

  727. Majda, A. A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41 (1981), 70–93.

    Article  MATH  MathSciNet  Google Scholar 

  728. Majda, A. The stability of multi-dimensional shock fronts. Memoirs AMS 41 (1983), No. 275.

    Google Scholar 

  729. Majda, A. The existence of multi-dimensional shock fronts. Memoirs AMS 43 (1983), No. 281.

    Google Scholar 

  730. Majda, A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer, 1984.

    Google Scholar 

  731. Majda, A. Nonlinear geometric optics for hyperbolic systems of conservation laws. Oscillation Theory, Computation and Methods of Compensated Compactness, pp. 115–165, eds. C. Dafermos, J.L. Ericksen, D. Kinderlehrer and M. Slemrod. New York: Springer, 1986.

    Google Scholar 

  732. Majda, A. and R.L. Pego Stable viscosity matrices for systems of conservation laws. J. Diff. Eqs. 56 (1985), 229–262.

    Article  MathSciNet  Google Scholar 

  733. Majda, A. and R.R. Rosales Resonantly interacting weakly nonlinear hyperbolic waves, I. A single space variable. Studies Appl. Math. 71 (1984), 149–179.

    MathSciNet  Google Scholar 

  734. Majda, A., Rosales, R. and M. Schonbek A canonical system of integrodifferential equations arising in resonant nonlinear acoustics. Studies Appl. Math. 79 (1988), 205–262.

    MathSciNet  Google Scholar 

  735. Makino, T., Ukai, S. and S. Kawashima Sur la solution à support compact de l’ équations d’Euler compressible. Japan J. Appl. Math. 3 (1986), 249–257.

    MathSciNet  Google Scholar 

  736. Málek, J., Nečas, J., Rokyta, M. and M. Růžčka Weak and Measure-Valued Solutions to Evolutionary PDEs. London: Chapman & Hall, 1996.

    Google Scholar 

  737. Marcati, P. and R. Natalini Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rational Mech. Anal. 129 (1995), 129–145.

    Article  MathSciNet  Google Scholar 

  738. Marcati, P. and R. Natalini Weak solutions to a hydrodynamic model for semiconductors-the Cauchy problem. Proc. Royal Soc. Edinburgh 125A (1995), 115–131.

    MathSciNet  Google Scholar 

  739. Marcati, P. and Ronghua Pan On the diffusive profiles for the system of compressible adiabatic flow through porous media. SIAM J Math. Anal. 33 (2001), 790–826.

    Article  MathSciNet  Google Scholar 

  740. Marcati, P. and B. Rubino Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Diff. Eqs. 162 (2000), 359–399.

    Article  MathSciNet  Google Scholar 

  741. Marsden, J.E. and T.J.R. Hughes Mathematical Foundations of Elasticity. Englewood Cliffs: Prentice-Hall, 1983.

    Google Scholar 

  742. Marson, A. Nonconvex conservation laws and ordinary differential equations. J. London Math. Soc. Ser. II, 69 (2004), 428–440.

    MATH  MathSciNet  Google Scholar 

  743. Mascia, C. Qualitative behavior of conservation laws with reaction term and nonconvex flux. Quart. Appl. Math. 58 (2000), 739–761.

    MATH  MathSciNet  Google Scholar 

  744. Mascia, C. and C. Sinestrari The perturbed Riemann problem for a balance law. Adv. Diff. Eqs. 2 (1997), 779–810.

    MathSciNet  Google Scholar 

  745. Matano, H. Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo, Sect. 1A 29 (1982), 401–441.

    MATH  MathSciNet  Google Scholar 

  746. Maxwell, J.C. On the dynamical theory of gases. Philos. Trans. Roy. Soc. London Ser. A 157 (1867), 49–88.

    Google Scholar 

  747. Mercier, J.M. and B. Piccoli Global continuous Riemann solver for nonlinear elasticity. Arch. Rational Mech. Anal. 156 (2000), 89–119.

    MathSciNet  Google Scholar 

  748. Métivier, G. Problèmes de Cauchy et ondes non linéaires. Journées Equations aux derivées partielles (1986), 1–29.

    Google Scholar 

  749. Métivier, G. Stability of multidimensional weak shocks. Comm. PDE 15 (1990), 983–1028.

    MATH  Google Scholar 

  750. Métivier, G. Stability of multidimensional shocks. Advances in the Theory of Shock Waves, pp. 25–103, ed. H. Freistuhler and A. Szepessy. Boston: Birkhäuser, 2001.

    Google Scholar 

  751. Mises, R.V. Mathematical Theory of Compressible Fluid Flow. New York: Academic Press, 1958.

    Google Scholar 

  752. Mock, M.S. (M. Sever) A topological degree for orbits connecting critical points of autonomous systems. J. Diff. Eqs. 38 (1980), 176–191.

    Article  MATH  MathSciNet  Google Scholar 

  753. Morawetz, C.S. On the nonexistence of continuous transonic flows past profiles, I; II; III. Comm. Pure Appl.Ṁath. 9 (1956), 45–68; 10 (1957), 107–131; 11 (1958), 129–144.

    MATH  MathSciNet  Google Scholar 

  754. Morrey, C.B. Quasiconvexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952), 25–53.

    MATH  MathSciNet  Google Scholar 

  755. Müller, I. On the entropy inequality. Arch. Rational Mech. Anal. 26 (1967), 118–141.

    MATH  MathSciNet  Google Scholar 

  756. Müller, I. Thermodynamics. London: Pitman, 1985.

    Google Scholar 

  757. Müller, I. and T. Ruggeri Rational Extended Thermodynamics. (Second Edition). New York: Springer, 1998.

    Google Scholar 

  758. Müller, S. and I. Fonseca A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999), 1355–1390.

    MathSciNet  Google Scholar 

  759. Murat, F. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 5 (1978), 489–507.

    MATH  MathSciNet  Google Scholar 

  760. Murat, F. L” injection du cône positif de H−1 dans W−1,q est compacte pour tout q < 2. J. Math. Pures Appl. 60 (1981), 309–322.

    MATH  MathSciNet  Google Scholar 

  761. Natalini, R. Convergence to equilibrium for the relaxation approximations of conservation laws. Comm. Pure Appl. Math. 49 (1996), 795–823.

    Article  MATH  MathSciNet  Google Scholar 

  762. Natalini, R. A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Diff. Eqs. 148 (1998), 292–317.

    Article  MATH  MathSciNet  Google Scholar 

  763. Natalini, R. Recent mathematical results on hyperbolic relaxation problems. Analysis of Systems of Conservation Laws, pp. 128–198, ed. H. Freistühler. London: Chapman and Hall/CRC, 1998.

    Google Scholar 

  764. Natalini, R., Sinestrari C. and A. Tesei Incomplete blowup of solutions of quasilinear hyperbolic balance laws. Arch. Rational Mech. Anal. 135 (1996), 259–296.

    Article  MathSciNet  Google Scholar 

  765. Nessyahu, H. and E. Tadmor The convergence rate of approximate solutions for nonlinear scalar conservation laws. SIAM J. Num. Anal. 29 (1992), 1505–1519.

    MathSciNet  Google Scholar 

  766. von Neumann, J. Theory of shock waves. Collected Works, Vol. VI, pp. 178–202. Oxford: Pergamon Press, 1963.

    Google Scholar 

  767. von Neumann, J. Oblique reflextion of shocks. Collected Works, Vol. VI, pp. 238–299. Oxford: Pergamon Press, 1963.

    Google Scholar 

  768. von Neumann, J. Refraction, intersection and reflection of shock waves. Collected Works, Vol. VI, pp. 300–308. Oxford: Pergamon Press, 1963.

    Google Scholar 

  769. Neves, W. and D. Serre The incompleteness of the Born-Infeld model for nonlinear multi-d Maxwell’s equations. Quart. Appl. Math. 63 (2005), 343–368.

    MathSciNet  Google Scholar 

  770. Nickel, K. Gestaltaussagen über Lösungen parabolischer Differentialgleichungen. J. Reine Angew. Math. 211 (1962), 78–94.

    MATH  MathSciNet  Google Scholar 

  771. Nishida, T. Global solution for an initial boundary value problem of a quasilinear hyperbolic system. Proc. Japan Acad. 44 (1968), 642–646.

    MATH  MathSciNet  Google Scholar 

  772. Nishida, T. and J.A. Smoller Solutions in the large for some nonlinear hyperbolic conservation laws. Comm. Pure Appl. Math. 26 (1973), 183–200.

    MathSciNet  Google Scholar 

  773. Nishida, T. and J.A. Smoller Mixed problems for nonlinear conservation laws. J. Diff. Eqs. 23 (1977), 244–269.

    Article  MathSciNet  Google Scholar 

  774. Noelle, S. Development of singularities for the complex Burgers equation. Nonlinear Anal. 26 (1986), 1313–1321.

    MathSciNet  Google Scholar 

  775. Noelle, S. Radially symmetric solutions for a class of hyperbolic systems of conservation laws. ZAMP 48 (1997), 676–679.

    MATH  MathSciNet  Google Scholar 

  776. Noll, W. A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2 (1958), 197–226.

    Article  MATH  Google Scholar 

  777. Noll, W. The foundations of classical mechanics in the light of recent advances in continuum mechanics. The Axiomatic Method, pp. 266–281. Amsterdam: North Holland, 1959.

    Google Scholar 

  778. Nouri, A., Omrane, A. and J.P. Vila Boundary conditions for scalar conservation laws from a kinetic point of view. J. Stat. Phys. 94 (1999), 779–804.

    Article  MathSciNet  Google Scholar 

  779. Oleinik, O.A. The Cauchy problem for nonlinear equations in a class of discontinuous functions. Dokl. Akad. Nauk SSSR 95 (1954), 451–454. English translation: AMS Translations, Ser. II, 42, 7–12.

    MATH  MathSciNet  Google Scholar 

  780. Oleinik, O.A. Discontinuous solutions of non-linear differential equations. Usp. Mat. Nauk 12 (1957), 3–73. English translation: AMS Translations, Ser. II, 26, 95–172.

    MATH  MathSciNet  Google Scholar 

  781. Oleinik, O.A. On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equations occurring in mechanics. Usp. Mat. Nauk 12 (1957), 169–176.

    MATH  MathSciNet  Google Scholar 

  782. Oleinik, O.A. Uniqueness and stability of the generalized solution of the Cauchy problem for quasilinear equation. Usp. Mat. Nauk 14 (1959), 165–170. English translation: AMS Translations, Ser. II, 33, 285–290.

    MATH  MathSciNet  Google Scholar 

  783. Osher, S. and E. Tadmor On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988), 19–51.

    MathSciNet  Google Scholar 

  784. Ostrov, D.N. Asymptotic behavior of two interreacting chemicals in a chromatography reactor. SIAM J. Math. Anal. 27 (1996), 1559–1596.

    Article  MATH  MathSciNet  Google Scholar 

  785. Otto, F. Initial-boundary value problem for a scalar conservation law. C.R. Acad. Sci. Paris, Série I, 322 (1996), 729–734.

    MATH  MathSciNet  Google Scholar 

  786. Otto, F. A regularizing effect of nonlinear transport equations. Quart. Appl. Math. 56 (1998), 355–375.

    MATH  MathSciNet  Google Scholar 

  787. Pan, Ronghua Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media. Michigan Math. J. 49 (2001), 519–540.

    MATH  MathSciNet  Google Scholar 

  788. Pan, Tao and Longwei Lin The global solution of the scalar nonconvex conservation law with boundary condition. J. PDE 8 (1995), 371–383; 11 (1998), 1–8.

    MathSciNet  Google Scholar 

  789. Panov, E. Yu. Uniqueness of the solution to the Cauchy problem for a first-order quasilinear equation with an admissible strictly convex entropy. Mat. Zametki 55 (1994), 116–129. English translation: Mathematical Notes 55 (1994), 517–525.

    MATH  MathSciNet  Google Scholar 

  790. Panov, E. Yu. On the problem of symmetrizability for hyperbolic systems of first order. (Preprint).

    Google Scholar 

  791. Panov, E. Yu. Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. (Preprint).

    Google Scholar 

  792. Pant, V. Global entropy solutions for isentropic relativistic fluid dynamics. Comm. PDE 21 (1996), 1609–1641.

    MATH  MathSciNet  Google Scholar 

  793. Pego, R.L. Stable viscosities and shock profiles for systems of conservation laws. Trans. AMS 282 (1984), 749–763.

    MATH  MathSciNet  Google Scholar 

  794. Pego, R.L. Nonexistence of a shock layer in gas dynamics with a nonconvex equation of state. Arch. Rational Mech. Anal. 94 (1986), 165–178.

    MATH  MathSciNet  Google Scholar 

  795. Pego, R.L. Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and Stability. Arch. Rational Mech. Anal. 97 (1987), 353–394.

    Article  MATH  MathSciNet  Google Scholar 

  796. Pego, R.L. Some explicit resonating waves in weakly nonlinear gas dynamics. Studies Appl. Math. 79 (1988), 263–270.

    MATH  MathSciNet  Google Scholar 

  797. Pego, R.L. and D. Serre Instabilities in Glimm’s scheme for two systems of mixed type. SIAM J. Num. Anal. 25 (1988), 965–988.

    MathSciNet  Google Scholar 

  798. Pence, T.J. On the emergence and propagation of a phase boundary in an elastic bar with a suddenly applied end load. J. Elasticity 16 (1986), 3–42.

    Article  MATH  MathSciNet  Google Scholar 

  799. Pence, T.J. On the mechanical dissipation of solutions to the Riemann problem for impact involving a two-phase elastic material. Arch. Rational Mech. Anal. 117 (1992), 1–52.

    Article  MATH  MathSciNet  Google Scholar 

  800. Pericak-Spector, K.A. and S.J. Spector Nonuniqueness for a hyperbolic system: cavitation in nonlinear elastodynamics. Arch. Rational Mech. Anal. 101 (1988), 293–317.

    Article  MathSciNet  Google Scholar 

  801. Pericak-Spector, K.A. and S.J. Spector On dynamic cavitation with shocks in nonlinear elasticity. Proc. Royal Soc. Edinburgh 127A (1997), 837–857.

    MathSciNet  Google Scholar 

  802. Perthame, B. Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure. J. Math. Pures Appl. 77 (1998), 1055–1064.

    MATH  MathSciNet  Google Scholar 

  803. Perthame, B. Kinetic Formulations of Conservation Laws. Oxford: Oxford University Press, 2002.

    Google Scholar 

  804. Perthame, B. Kinetic formulations in parabolic and hyperbolic PDE: From theory to numerics. Handbook of Differential Equations. Evolutionary Equations. Vol. I, pp. 437–471, ed. C.M. Dafermos and E. Feireisl. Amsterdam: Elsevier 2004.

    Google Scholar 

  805. Perthame, B. and M. Pulvirenti On some large systems of random particles which approximate scalar conservation laws. Asympt. Anal. 10 (1995), 263–278.

    MathSciNet  Google Scholar 

  806. Perthame, B. and E. Tadmor A kinetic equation with kinetic entropy functions for scalar conservation laws. Comm. Math. Phys. 136 (1991), 501–517.

    Article  MathSciNet  Google Scholar 

  807. Perthame, B. and A.E. Tzavaras Kinetic formulation for systems of two conservation laws and elastodynamics. Arch. Rational Mech. Anal. 155 (2000), 1–48.

    Article  MathSciNet  Google Scholar 

  808. Perthame, B. and M. Westdickenberg Total oscillation diminishing property for scalar conservation laws. Numerische Mathematik 100 (2005), 331–349.

    Article  MathSciNet  Google Scholar 

  809. Peters, G.R. and S. Čanić On the oscillatory solutions in hyperbolic conservation laws. Nonlinear Anal. Real World Appl. 1 (2000), 287–314.

    MathSciNet  Google Scholar 

  810. Poisson, S.D. Mémoire sur la théorie du son. J. Ecole Polytechnique, 7 (1808), 319–392.

    Google Scholar 

  811. Poisson, S.D. Mémoire sur les équations générales de l’ équilibre et du mouvement des corps élastiques et des fluides. J. Ecole Polytechnique, 13 (1831), 1–174.

    Google Scholar 

  812. Portilheiro, M. Weak solutions for equations defined by accretive operators. I. Proc. Royal Soc. Edinburgh 133A (2003), 1193–1207.

    MathSciNet  Google Scholar 

  813. Poupaud, F. and M. Rascle Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. PDE 22 (1997), 337–358.

    MathSciNet  Google Scholar 

  814. Poupaud, F., Rascle, M. and J.P. Vila Global solutions to the isothermal Euler-Poisson system with arbitrarily large data. J. Diff. Eqs. 123 (1995), 93–121.

    Article  MathSciNet  Google Scholar 

  815. Qin, Tiehu Symmetrizing the nonlinear elastodynamic system. J. Elasticity. 50 (1998), 245–252.

    MATH  MathSciNet  Google Scholar 

  816. Quinn, B. (B.L. Keyfitz) Solutions with shocks: an example of an L1-contraction semi-group. Comm. Pure Appl. Math. 24 (1971), 125–132.

    MATH  MathSciNet  Google Scholar 

  817. Rankine, W.J.M. On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Royal Soc. London 160 (1870), 277–288.

    Google Scholar 

  818. Rascle, M. On the static and dynamic study of oscillations for some nonlinear hyperbolic systems of conservation laws. Ann. Inst. Henri Poincaré 8 (1991), 333–350.

    MATH  MathSciNet  Google Scholar 

  819. Rauch, J. BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one. Comm. Math. Phys. 106 (1986), 481–484.

    Article  MATH  MathSciNet  Google Scholar 

  820. Rayleigh, Lord (J.W. Strutt) Letter to Stokes, dated June 2, 1877. Mathematical and Physical Papers by G.G. Stokes, reprinted with a new preface by C.A. Truesdell, Vol. I, pp. ivG–ivH. New York: Johnson Reprint Co., 1966.

    Google Scholar 

  821. Rayleigh, Lord (J.W. Strutt) Note on tidal bores. Proc. Royal Soc. London 81A (1908), 448–449.

    Google Scholar 

  822. Rayleigh, Lord (J.W. Strutt) Aerial plane waves of finite amplitude. Proc. Royal Soc. London 84A (1910), 247–284.

    Google Scholar 

  823. Rezakhanlou, F. Microscopic structure of shocks in one-conservation laws. Ann. Inst. Henri Poincaré 12 (1995), 119–153.

    MATH  MathSciNet  Google Scholar 

  824. Rhee, Hyun-Ku, Aris, R. and N.R. Amundson First-Order Partial Differential Equations, Vols. I–II. Englewood Cliffs: Prentice-Hall, 1986–1989.

    Google Scholar 

  825. Riemann, B. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Gott. Abh. Math. Cl. 8 (1860), 43–65.

    Google Scholar 

  826. Risebro, N.H. A front-tracking alternative to the random choice method. Proc. AMS 117 (1993), 1125–1139.

    MATH  MathSciNet  Google Scholar 

  827. Risebro, N.H. and A. Tveito Front tracking applied to a non-strictly hyperbolic system of conservation laws. SIAM J. Sci. Statist. Comput. 12 (1991), 1401–1419.

    Article  MathSciNet  Google Scholar 

  828. Risebro, N.H. and A. Tveito A front tracking method for conservation laws in one dimension. J. Comput. Phys. 101 (1992), 130–139.

    Article  MathSciNet  Google Scholar 

  829. Rivlin, R.S. and J.L. Ericksen Stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4 (1955), 323–425.

    MathSciNet  Google Scholar 

  830. Rosakis, P. An equal area rule for dissipative kinetics of propagating strain discontinuities. SIAM J. Appl. Math. 55 (1995), 100–123.

    Article  MATH  MathSciNet  Google Scholar 

  831. Rousset, F. Inviscid boundary conditions and stability of viscous boundary layers. Asymptot. Anal. 26 (2001), 285–306.

    MATH  MathSciNet  Google Scholar 

  832. Rousset, F. The residual boundary conditions coming from the real vanishing viscosity method. Discrete Contin. Dyn. Syst. 8 (2002), 605–625.

    MATH  MathSciNet  Google Scholar 

  833. Rousset, F. Stability of small amplitude bondary layers for mixed hyperbolic-parabolic systems. Trans. AMS 355 (2003), 2991–3008.

    MATH  MathSciNet  Google Scholar 

  834. Rousset, F. Viscous approximation of strong shocks of systems of conservation laws. SIAM J. Math. Anal. 35 (2003), 492–519.

    Article  MATH  MathSciNet  Google Scholar 

  835. Roytburd V. and M. Slemrod Positively invariant regions for a problem in phase transitions. Arch. Rational Mech. Anal. 93 (1986), 61–79.

    MathSciNet  Google Scholar 

  836. RoŽdestvenskii, B.L. A new method of solving the Cauchy problem in the large for quasilinear equations. Dokl. Akad. Nauk SSSR 138 (1961), 309–312.

    MathSciNet  Google Scholar 

  837. RoŽdestvenskii, B.L. and N.N. Janenko Systems of Quasilinear Equations and Their Applications to Gas Dynamics. Moscow: Nauka, 1978. English translation: Providence: American Mathematical Society, 1983.

    Google Scholar 

  838. Rubino, B. On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws. Ann. Inst. Henri Poincaré 10 (1993), 627–656.

    MATH  MathSciNet  Google Scholar 

  839. Ruggeri, T. Galilean invariance and entropy principle for systems of balance laws. Cont. Mech. Therm. 1 (1989), 3–20.

    MATH  MathSciNet  Google Scholar 

  840. Ruggeri, T. Convexity and symmetrization in relativistic theories. Cont. Mech. Therm. 2 (1990), 163–177.

    MathSciNet  Google Scholar 

  841. Ruggeri, T. and D. Serre Stability of constant equilibrium state for dissipative balance laws systems with a convex entropy. Quart. Appl. Math. 62 (2004), 163–179.

    MathSciNet  Google Scholar 

  842. Ruggeri, T. and S. Simić Nonlinear wave propagation in binary mixtures of Euler fluids. Cont. Mech. Therm. 16 (2004), 125–148.

    Google Scholar 

  843. Ruggeri, T. and A. Strumia Main field and convex covariant density for quasilinear hyperbolic systems. Ann. Inst. Henri Poincaré, Section A, 34 (1981), 65–84.

    MathSciNet  Google Scholar 

  844. Sablé-Tougeron, M. Méthode de Glimm et problème mixte. Ann. Inst. Henri Poincaré 10 (1993), 423–443.

    MATH  Google Scholar 

  845. Sablé-Tougeron, M. Stabilité de la structure d’une solution de Riemann à deux grand chocs. Ann. Univ. Ferrara 44 (1998), 129–172.

    MATH  Google Scholar 

  846. Saint-Venant, A.J.C. Théorie du mouvement non-permanent des eaux, avee application aux crues des rivières et à l’ introduction des marées dans leur lit. C.R. Acad. Sci. Paris 73 (1871), 147–154.

    Google Scholar 

  847. Schaeffer, D. A regularity theorem for conservation laws. Adv. in Math. 11 (1973), 368–386.

    Article  MATH  MathSciNet  Google Scholar 

  848. Schaeffer, D. Supersonic flow past a nearly straight wedge. Duke Math. J. 43 (1976), 637–670.

    Article  MATH  MathSciNet  Google Scholar 

  849. Schaeffer D. and M. Shearer The classification of 2 × 2 nonstrictly hyperbolic conservation laws, with application to oil recovery. Comm. Pure Appl. Math. 40 (1987), 141–178.

    MathSciNet  Google Scholar 

  850. Schaeffer D. and M. Shearer Riemann problem for nonstrictly hyperbolic 2 × 2 systems of conservation laws. Trans. AMS 304 (1987), 267–306.

    MathSciNet  Google Scholar 

  851. Schatzman, M. Continuous Glimm functionals and uniqueness of solutions of the Riemann problem. Indiana U. Math. J. 34 (1985), 533–589.

    MATH  MathSciNet  Google Scholar 

  852. Schauder, J. Cauchy’sches Problem für partielle Differentialgleichungen erster Ordnung. Comment. Math. Helvetici 9 (1937), 263–283.

    MATH  Google Scholar 

  853. Schecter, S. Undercompressive shock waves and the Dafermos regularization. Nonlinearity 15 (2002), 1361–1377.

    Article  MATH  MathSciNet  Google Scholar 

  854. Schecter, S. Existence of Dafermos profiles for singular shocks. J. Diff. Eqs. 205 (2004), 185–210.

    Article  MATH  MathSciNet  Google Scholar 

  855. Schecter, S., Marchesin, D. and B.J. Plohr Structurally stable Riemann solutions. J. Diff. Eqs. 126 (1996), 303–354.

    Article  MathSciNet  Google Scholar 

  856. Schecter, S., Marchesin, D. and B.J. Plohr Classification of codimension-one Riemann solutions. J. Dynam. Differential Equations 13 (2001), 523–588.

    MathSciNet  Google Scholar 

  857. Schecter, S., Marchesin, D. and B.J. Plohr Computation of Riemann solutions using the Dafermos regularization and continuation. Discrete Contin. Dynam. Systems 10 (2004), 965–986.

    MathSciNet  Google Scholar 

  858. Schecter, S. and M. Shearer Undercompressive shocks for non-strictly hyperbolic conservation laws. J. Dynamics Diff. Eqs. 3 (1991), 199–271.

    MathSciNet  Google Scholar 

  859. Schecter, S. and P. Szmolyan Composite waves in the Dafermos regularization. J. Dynam. Diff. Eqs. 16 (2004), 847–867.

    Article  MathSciNet  Google Scholar 

  860. Schochet, S. The compressible Euler equations in a bounded domain. Comm. Math. Phys. 104 (1986), 49–75.

    Article  MATH  MathSciNet  Google Scholar 

  861. Schochet, S. Examples of measure-valued solutions. Comm. PDE 14 (1989), 545–575.

    MATH  MathSciNet  Google Scholar 

  862. Schochet, S. Glimm scheme for systems with almost planar interactions. Comm. PDE 16 (1991), 1423–1440.

    MATH  MathSciNet  Google Scholar 

  863. Schochet, S. Sufficient conditions for local existence via Glimm’s scheme for large BV data. J. Diff. Eqs. 89 (1991), 317–354.

    Article  MATH  MathSciNet  Google Scholar 

  864. Schochet, S. Resonant nonlinear geometric optics for weak solutions of conservation laws. J. Diff. Eqs. 113 (1994), 473–504.

    Article  MATH  MathSciNet  Google Scholar 

  865. Schochet, S. The essence of Glimm’s scheme. Nonlinear Evolutionary Partial Differential Equations, pp. 355–362, ed. X. Ding and T.P. Liu. Providence: American Mathematical Society, 1997.

    Google Scholar 

  866. Schochet, S. and E. Tadmor The regularized Chapman-Enskog expansion for scalar conservation laws. Arch. Rational Mech. Anal. 119 (1992), 95–107.

    Article  MathSciNet  Google Scholar 

  867. Schonbek, M.E. Convengence of solutions to nonlinear dispersive equations. Comm. PDE 7 (1982), 959–1000.

    MATH  MathSciNet  Google Scholar 

  868. Schonbek, M.E. Existence of solutions to singular conservation laws. SIAM J. Math. Anal. 15 (1984), 1125–1139.

    Article  MATH  MathSciNet  Google Scholar 

  869. Schulz-Rinne, C.W. Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24 (1993), 76–88.

    Article  MATH  MathSciNet  Google Scholar 

  870. Schulze S. and M. Shearer Undercompressive shocks for a system of hyperbolic conservation laws with cubic nonlinearity. J. Math. Anal. Appl. 229 (1999), 344–362.

    Article  MathSciNet  Google Scholar 

  871. Serre, D. Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation. J. Diff. Eqs. 67 (1987), 137–168.

    Google Scholar 

  872. Serre, D. La compacité par compensation pour les systèmes non linéaires de deux equations a une dimension d’ espace. J. Math. Pures Appl. 65 (1987), 423–468.

    MathSciNet  Google Scholar 

  873. Serre, D. Domaines invariants pour les systèmes hyperboliques de lois de conservation. J. Diff. Eqs. 69 (1987), 46–62.

    Article  MATH  MathSciNet  Google Scholar 

  874. Serre, D. Les ondes planes en électromagnétisme non linéaire. Physica D 31 (1988), 227–251.

    Article  MATH  MathSciNet  Google Scholar 

  875. Serre, D. Oscillations non linéaires des systèmes hyperboliques: méthodes et résultats qualitatif. Ann. Inst. Henri Poincaré 8 (1991), 351–417.

    MATH  MathSciNet  Google Scholar 

  876. Serre, D. Systèmes hyperboliques riches de lois de conservation. Nonlinear PDE’s and their Applications, ed. H. Brézis and J.-L. Lions, Harlow: Longman, 1992.

    Google Scholar 

  877. Serre, D. Integrability of a class of systems of conservation laws. Forum Math. 4 (1992), 607–623.

    MATH  MathSciNet  Google Scholar 

  878. Serre, D. Oscillations non-linéaires de haute fréquence. Dim ≥ 2. Nonlinear Variational Problems and Partial Differential Equations, ed. A. Marino and M. K.V. Murthy, Harlow: Longman, 1995.

    Google Scholar 

  879. Serre, D. Écoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion d’un choc plan par un dièdre compressif. Arch. Rational Mech. Anal. 132 (1995), 15–36.

    Article  MATH  MathSciNet  Google Scholar 

  880. Serre, D. Ondes spirales pour le problème de Riemann 2-D d’un fluide compressible. Ann. Fac. Sci. Toulouse Math. 5 (1996), 125–135.

    MATH  MathSciNet  Google Scholar 

  881. Serre, D. Systèmes de Lois de Conservation, Vols. I–II. Paris: Diderot, 1996. English translation: Systems of Conservation Laws, Vols. 1–2. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  882. Serre, D. Stabilité L1 pour les lois de conservation scalaires visqueses. C. R. Acad. Sci. Paris, Série I, 323 (1996), 359–363.

    MATH  MathSciNet  Google Scholar 

  883. Serre, D. Solutions classiques globales des équations d’ Euler pour un fluide parfait compressible. Ann. Inst. Fourier, Grenoble 47 (1997), 139–153.

    MATH  MathSciNet  Google Scholar 

  884. Serre, D. Solutions globales des systèmes paraboliques de lois de conservations. Ann. Inst. Fourier, Grenoble 48 (1998), 1069–1091.

    MATH  MathSciNet  Google Scholar 

  885. Serre, D. Relaxation semi-linéaire et cinétique des lois de conservation. Ann. Inst. Henri Poincaré. 17 (2000), 169–192.

    MATH  MathSciNet  Google Scholar 

  886. Serre, D. Systems of conservation laws: A challenge for the XXIst century. Mathematics Unlimited-2001 and Beyond, pp. 1061–1080, eds. B. Engquist and W. Schmid. Berlin: Springer, 2001.

    Google Scholar 

  887. Serre, D. Sur la stabilté des couches limites de viscosité. Ann. Inst. Fourier 51 (2001), 109–130.

    MATH  MathSciNet  Google Scholar 

  888. Serre, D. La transition vers l’instabilité pour les ondes de choc multi-dimensionnelles. Trans. AMS 353 (2001), 5071–5093.

    MATH  MathSciNet  Google Scholar 

  889. Serre, D. The stability of constant equilibrium states in relaxation models. Ann. Univ. Ferrara, Sez. VII (N.S.) 48 (2002), 253–274.

    MATH  MathSciNet  Google Scholar 

  890. Serre, D. L1-stability of constants in a model for radiating gases. Commun. Math. Sci. 1 (2003), 197–205.

    MathSciNet  Google Scholar 

  891. Serre, D. L1-stability of nonlinear waves in scalar conservation laws. Handbook of Differential Equations. Evolutionary Equations, Vol. I, pp. 473–553, ed. C.M. Dafermos and E. Feireisl. Amsterdam: Elsevier 2004.

    Google Scholar 

  892. Serre, D. Hyperbolicity of the non-linear models of Maxwell’s equations. Arch. Rational Mech. Anal. 172 (2004), 309–331.

    Article  MATH  MathSciNet  Google Scholar 

  893. Serre, D. Couches limites non charactéristiques pour les systèmes de lois de conservation; un guide pour utilisateurs. (Preprint).

    Google Scholar 

  894. Serre, D. and J. Shearer Convergence with physical viscosity for nonlinear elasticity. (Preprint).

    Google Scholar 

  895. Serre, D. and Ling Xiao Asymptotic behavior of large weak entropy solutions of the damped p-system. J. PDE 10 (1997), 355–368.

    MathSciNet  Google Scholar 

  896. Serre D. and K. Zumbrun Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 221 (2001), 267–292.

    Article  MathSciNet  Google Scholar 

  897. Sevennec, B. Geometry of hyperbolic systems of conservation laws. Bull. Soc. Math. France 122 (1994), Suppl. 56.

    Google Scholar 

  898. Sever, M. Existence in the large for Riemann problems for systems of conservation laws. Trans. AMS 292 (1985), 375–381.

    MATH  MathSciNet  Google Scholar 

  899. Sever, M. A class of hyperbolic systems of conservation laws satisfying weaker conditions than genuine nonlinearity. J. Diff. Eqs. 73 (1988), 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  900. Sever, M. The rate of total entropy generation for Riemann problems. J. Diff. Eqs. 87 (1990), 115–143.

    Article  MATH  MathSciNet  Google Scholar 

  901. Sever, M. Viscous structure of singular shocks. Nonlinearity 15 (2002), 705–725.

    Article  MATH  MathSciNet  Google Scholar 

  902. Sever, M. A class of nonlinear, nonhyperbolic systems of conservation laws with well-posed initial value problem. J. Diff. Eqs. 180 (2002), 238–271.

    Article  MATH  MathSciNet  Google Scholar 

  903. Sever, M. Distribution solutions of conservation laws. (Preprint).

    Google Scholar 

  904. Shandarin, S.F. and Ya. B. Zeldovich The large scale structures of the universe. Rev. Mod. Phys. 61 (1989), 185–220.

    Article  MathSciNet  Google Scholar 

  905. Shearer, J.W. Global existence and compactness in Lp for the quasi-linear wave equation. Comm. PDE 19 (1994), 1829–1877.

    MATH  MathSciNet  Google Scholar 

  906. Shearer, M. The Riemann problem for a class of conservation laws of mixed type. J. Diff. Eqs. 46 (1982), 426–443.

    Article  MATH  MathSciNet  Google Scholar 

  907. Shearer, M. Admissibility criteria for shock waves solutions of a system of conservation laws of mixed type. Proc. Royal Soc. Edinburgh 93A (1983), 233–244.

    MathSciNet  Google Scholar 

  908. Shearer, M. Nonuniqueness of admissible solutions of Riemann initial value problems for a system of conservation laws of mixed type. Arch. Rational Mech. Anal. 93 1986), 45–59.

    MATH  MathSciNet  Google Scholar 

  909. Shearer, M. The Riemann problem for the planar motion of an elastic string. J. Diff. Eqs. 61 (1986), 149–163.

    Article  MATH  MathSciNet  Google Scholar 

  910. Shearer, M. The Riemann problem for 2 × 2 systems of hyperbolic conservation laws with case I quadratic nonlinearities. J. Diff. Eqs. 80 (1989), 343–363.

    Article  MATH  MathSciNet  Google Scholar 

  911. Shearer, M., Schaeffer, D., Marchesin, D. and P. Paes-Leme Solution of the Riemann problem for a prototype 2 × 2 system of non-strictly hyperbolic conservation laws. Arch. Rational Mech. Anal. 97 (1987), 299–329.

    Article  MathSciNet  Google Scholar 

  912. Shearer, M. and Yadong Yang The Riemann problem for the p-system of conservation laws of mixed type with a cubic nonlinearity. Proc. Royal Soc. Edinburgh 125A (1995), 675–690.

    MathSciNet  Google Scholar 

  913. Sheng, Wancheng and Tong Zhang The Riemann problem for the transportation equations in gas dynamics. Memoirs AMS 137 (1999), No. 654.

    Google Scholar 

  914. Shizuta, Y. and S. Kawashima Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14 (1985), 249–275.

    MathSciNet  Google Scholar 

  915. Sideris, T. C. Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101 (1985), 475–485.

    Article  MATH  MathSciNet  Google Scholar 

  916. Sideris, T. C. The null condition and global existence of nonlinear elastic waves. Invent. Math. 123 (1996), 323–342.

    MATH  MathSciNet  Google Scholar 

  917. Sideris, T. C. Nonresonance and global existence of prestressed nonlinear elastic waves. Ann. of Math. 151 (2000), 849–874.

    MATH  MathSciNet  Google Scholar 

  918. Sideris, T. C., Thomases, B. and Dehua Wang Long time behavior of solutions to the 3D compressible Euler equations with damping. Comm. PDE 28 (2003), 795–816.

    MathSciNet  Google Scholar 

  919. Šilhavý, M. The Mechanics and Thermodynamics of Continuous Media. Berlin: Springer, 1997.

    Google Scholar 

  920. Sinestrari, C. Instability of discontinuous traveling waves for hyperbolic balance laws. J. Diff. Eqs. 134 (1997), 269–285.

    Article  MATH  MathSciNet  Google Scholar 

  921. Sinestrari, C. The Riemann problem for an inhomogeneous conservation law without convexity. SIAM J. Math. Anal. 28 (1997), 109–135.

    Article  MATH  MathSciNet  Google Scholar 

  922. Slemrod, M. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81 (1983), 301–315.

    Article  MATH  MathSciNet  Google Scholar 

  923. Slemrod, M. The viscosity-capillarity criterion for shocks and phase transitions. Arch. Rational Mech. Anal. 83 (1983), 333–361.

    MATH  MathSciNet  Google Scholar 

  924. Slemrod, M. Dynamic phase transitions in a van der Waals fluid. J. Diff. Eqs. 52 (1984), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  925. Slemrod, M. A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase. Arch. Rational Mech. Anal. 105 (1989), 327–365.

    MATH  MathSciNet  Google Scholar 

  926. Slemrod, M. Resolution of the spherical piston problem for compressible isotropic gas dynamics via a self-similar viscous limit. Proc. Royal Soc. Edinburgh 126A (1996), 1309–1340.

    MathSciNet  Google Scholar 

  927. Slemrod, M. and A.E. Tzavaras A limiting viscosity approach for the Riemann problem in isentropic gas dynamics. Indiana U. Math. J. 38 (1989), 1047–1074.

    MathSciNet  Google Scholar 

  928. Slemrod, M. and A.E. Tzavaras Shock profiles and self-similar fluid dynamics limits. J. Transport Th. Stat. Phys. 25 (1996), 531–542.

    MathSciNet  Google Scholar 

  929. Smith, R.G. The Riemann problem in gas dynamics. Trans. AMS 249 (1979), 1–50.

    MATH  Google Scholar 

  930. Smoller, J.A. A uniqueness theorem for Riemann problems. Arch. Rational Mech. Anal. 33 (1969), 110–115.

    Article  MATH  MathSciNet  Google Scholar 

  931. Smoller, J.A. Contact discontinuities in quasi-linear hyperbolic systems. Comm. Pure Appl. Math. 23 (1970), 791–801.

    MATH  MathSciNet  Google Scholar 

  932. Smoller, J.A. Shock Waves and Reaction-Diffusion Equations. (Second Edition). New York: Springer, 1994.

    Google Scholar 

  933. Smoller, J.A. and J.B. Temple Shock wave solutions of the Einstein equations. The Oppenheimer-Snyder model of gravitational collapse extended to the case of nonzero pressure. Arch. Rational Mech. Anal. 128 (1994), 249–297.

    Article  MathSciNet  Google Scholar 

  934. Smoller, J.A. and J.B. Temple General relativistic shock waves that extend the Oppenheimer-Snyder model. Arch. Rational Mech. Anal. 138 (1997), 239–277.

    Article  MathSciNet  Google Scholar 

  935. Smoller, J.A. and J.B. Temple Shock wave solutions of the Einstein equations: A general theory with examples. Advances in the Theory of Shock Waves, pp. 105–258, ed. H. Freistuhler and A. Szepessy. Boston: Birkhauser, 2001.

    Google Scholar 

  936. Smoller, J.A., Temple, J.B. and Zhou Ping Xin Instability of rarefaction shocks in systems of conservation laws. Arch. Rational Mech. Anal. 112 (1990), 63–81.

    Article  MathSciNet  Google Scholar 

  937. Sod, G.A. Numerical Methods in Fluid Dynamics. Cambridge: Cambridge U. Press, 1985.

    Google Scholar 

  938. Stoker, J.J. The formation of breakers and bores. Comm. Pure Appl. Math. 1 (1948), 1–87.

    MATH  MathSciNet  Google Scholar 

  939. Stokes, G.G. On a difficulty in the theory of sound. Philos. Magazine, Ser. 3, 33 (1848), 349–356.

    Google Scholar 

  940. Stokes, G.G. On a difficulty in the theory of sound. Mathematical and Physical Papers, Vol II, pp. 51–55. Cambridge: Cambridge U. Press, 1883.

    Google Scholar 

  941. Šverak, V. Rank-one convexity does not imply quasiconvexity. Proc. Royal Soc. Edinburgh 120A (1992), 185–189.

    Google Scholar 

  942. Szepessy, A. Measure-valued solutions of scalar conservation laws with boundary conditions. Arch. Rational Mech. Anal. 107 (1989), 181–193.

    Article  MATH  MathSciNet  Google Scholar 

  943. Szepessy, A. An existence result for scalar conservation laws using measure valued solutions. Comm. PDE 14 (1989), 1329–1350.

    MATH  MathSciNet  Google Scholar 

  944. Szepessy, A. and Zhou Ping Xin Nonlinear stability of viscous shock waves. Arch. Rational Mech. Anal. 122 (1993), 53–103.

    Article  MathSciNet  Google Scholar 

  945. Szepessy A. and K. Zumbrun Stability of rarefaction waves in viscous media. Arch. Rational Mech. Anal. 133 (1996), 249–298.

    Article  MathSciNet  Google Scholar 

  946. Tadmor, E. A minimum entropy principle in the gas dynamics equations. Appl. Num. Math. 2 (1986), 211–219.

    Article  MATH  MathSciNet  Google Scholar 

  947. Tadmor, E. Approximate Solutions of Nonlinear Conservation Laws. Lecture Notes in Math. No. 1697 (1998), 1–149. Berlin: Springer.

    Google Scholar 

  948. Tadmor, E. and T. Tassa On the piecewise smoothness of entropy solutions to scalar conservation laws. Comm. PDE 18 (1993), 1631–1652.

    MathSciNet  Google Scholar 

  949. Tan, De Chun Riemann problems for hyperbolic systems of conservation laws with no classical wave solutions. Quart. Appl. Math. 51 (1993), 765–776.

    MATH  MathSciNet  Google Scholar 

  950. Tan, De Chun and Tong Zhang Two-dimensional Riemann problems for a hyperbolic system of nonlinear conservation laws. I; II. J. Diff. Eqs. 111 (1994), 203–254; 255-282.

    MathSciNet  Google Scholar 

  951. Tan, De Chun, Zhang, Tong and Yu Xi Zheng Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Diff. Eqs. 112 (1994), 1–32.

    Article  MathSciNet  Google Scholar 

  952. Tang, Zhi Jing and T.C.T. Ting Wave curves for the Riemann problem of plane waves in isotropic elastic solids. Int. J. Eng. Sci. 25 (1987), 1343–1381.

    MathSciNet  Google Scholar 

  953. Tartar, L.C. Cours Peccot, Collège de France 1977.

    Google Scholar 

  954. Tartar, L.C. Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol IV, pp. 136–212, ed. R.J. Knops. London: Pitman, 1979.

    Google Scholar 

  955. Tartar, L.C. The compensated compactness method applied to systems of conservation laws. Systems of Nonlinear Partial Differential Equations, pp. 263–285, ed. J.M. Ball. Dordrecht: D. Reidel, 1983.

    Google Scholar 

  956. Taub, A.H. Relativistic Rankine-Hugoniot equations. Phys. Rev. 74 (1948), 328–334.

    Article  MATH  MathSciNet  Google Scholar 

  957. Taylor, G.I. The conditions necessary for discontinuous motions in gases. Proc. Royal Soc. London A84 (1910), 371–377.

    Google Scholar 

  958. Taylor, M.E. Pseudodifferential Operators and Nonlinear PDE. Boston: Birkhauser, 1991.

    Google Scholar 

  959. Taylor, M.E. Partial Differential Equations III. New York: Springer, 1996.

    Google Scholar 

  960. Temple, B. Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics. J. Diff. Eqs. 41 (1981), 96–161.

    Article  MATH  MathSciNet  Google Scholar 

  961. Temple, B. Global solution of the Cauchy problem for a class of 2×2 non-strictly hyperbolic conservation laws. Adv. in Appl. Math. 3 (1982), 335–375.

    Article  MATH  MathSciNet  Google Scholar 

  962. Temple, B. Systems of conservation laws with invariant submanifolds. Trans. AMS 280 (1983), 781–795.

    MATH  MathSciNet  Google Scholar 

  963. Temple, B. No L1-contractive metric for systems of conservation laws. Trans. AMS 288 (1985), 471–480.

    MATH  MathSciNet  Google Scholar 

  964. Temple, B. Decay with a rate for noncompactly supported solutions of conservation laws. Trans. AMS 298 (1986), 43–82.

    MATH  MathSciNet  Google Scholar 

  965. Temple, B. Weak stability in the global Lp norm for hyperbolic systems of conservation laws. Trans. AMS 317 (1990), 96–161.

    MathSciNet  Google Scholar 

  966. Temple, B. Sup-norm estimates in Glimm’s method. J. Diff. Eqs. 83 (1990), 79–84.

    Article  MATH  MathSciNet  Google Scholar 

  967. Temple, B. Weak stability in the global L′-norm for systems of hyperbolic conservation laws. Trans. AMS 317 (1990), 673–685.

    MATH  MathSciNet  Google Scholar 

  968. Temple, B. and R. Young The large time existence of periodic solutions for the compressible Euler equations. Mat. Contemp. 11 (1996), 171–190.

    MathSciNet  Google Scholar 

  969. Temple, B. and R. Young The large time stability of sound waves. Comm. Math. Phys. 179 (1996), 417–465.

    Article  MathSciNet  Google Scholar 

  970. Tidriri, M. Hydrodynamic limit of a BGK like model on domains with boundaries and analysis of kinetic boundary conditions for scalar multidimensional conservation laws. (Preprint).

    Google Scholar 

  971. Toro, E. Riemann Solvers and Numerical Methods for Fluid Mechanics. Berlin: Springer 1997.

    Google Scholar 

  972. Trivisa, K. A priori estimates in hyperbolic systems of conservation laws via generalized characteristics. Comm. PDE 22 (1997), 235–267.

    MATH  MathSciNet  Google Scholar 

  973. Trivisa, K. BV estimates for n×n systems of conservation laws. Contemp. Math. 327 (2003), 341–358.

    MATH  MathSciNet  Google Scholar 

  974. Truesdell, C.A. and W. Noll The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3. Berlin: Springer, 1965.

    Google Scholar 

  975. Truesdell, C.A. and R.A. Toupin The Classical Field Theories. Handbuch der Physik, Vol. III/1. Berlin: Springer, 1960.

    Google Scholar 

  976. Truskinovsky, L. Structure of an isothermal phase discontinuity. Soviet Physics Doklady 30 (1985), 945–948.

    Google Scholar 

  977. Truskinovsky, L. Transition to detonation in dynamic phase changes. Arch. Rational Mech. Anal. 125 (1994), 375–397.

    Article  MATH  MathSciNet  Google Scholar 

  978. Tsarev, S.P. On Poisson brackets and one-dimensional systems of hydrodynamic type. Dokl. Akad. Nauk SSSR 282 (1985), 534–537.

    MATH  MathSciNet  Google Scholar 

  979. Tupciev, V.A. The problem of decomposition of an arbitrary discontinuity for a system of quasilinear equations without the convexity condition. Ž. Vyčisl Mat. i Mat. Fiz. 6 (1966), 527–547. English translation: USSR Comp. Math. Math. Phys. 6 (1966), 161–190.

    MathSciNet  Google Scholar 

  980. Tupciev, V.A. On the method for introducing viscosity in the study of problems involving the decay of a discontinuity. Dokl. Akad. Nauk SSSR 211 (1973), 55–58. English translation: Soviet Math. 14 (1973), 978–982.

    MATH  MathSciNet  Google Scholar 

  981. Tveito A. and R. Winther Existence, uniqueness, and continuous dependence for a system of hyperbolic conservation laws modeling polymer flooding. SIAM J. Math. Anal. 22 (1991), 905–933.

    Article  MathSciNet  Google Scholar 

  982. Tveito A. and R. Winther On the rate of convergence to equilibrium for a system of conservation laws with a relaxation term. SIAM J. Math. Anal. 28 (1997), 136–161.

    Article  MathSciNet  Google Scholar 

  983. Tzavaras, A.E. Elastic as limit of viscoelastic response in a context of self-similar viscous limits. J. Diff. Eqs. 123 (1995), 305–341.

    Article  MATH  MathSciNet  Google Scholar 

  984. Tzavaras, A.E. Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws. Arch. Rational Mech. Anal. 135 (1996), 1–60.

    MATH  MathSciNet  Google Scholar 

  985. Tzavaras, A.E. Materials with internal variables and relaxation to conservation laws. Arch. Rational Mech. Anal. 146 (1999), 129–155.

    Article  MATH  MathSciNet  Google Scholar 

  986. Tzavaras, A.E. Viscosity and relaxation approximation for systems of conservation laws. Lect. Notes Comput. Sci. Eng. 5 (1999), 73–122.

    MATH  MathSciNet  Google Scholar 

  987. Tzavaras, A.E. The Riemann function, singular entropies, and the structure of oscillations in systems of two conservation laws. Arch. Rational Mech. Anal. 169 (2003), 119–145.

    Article  MATH  MathSciNet  Google Scholar 

  988. Tzavaras, A.E. Relative entropy in hyperbolic relaxation. (Preprint).

    Google Scholar 

  989. Vasseur, A. Time regularity for the system of isentropic gas dynamics with γ = 3. Comm. PDE 24 (1999), 1987–1997.

    MATH  MathSciNet  Google Scholar 

  990. Vasseur, A. Strong traces for solutions to multidimensional scalar conservation laws. Arch. Rational Mech. Anal. 160 (2001), 181–193.

    MATH  MathSciNet  Google Scholar 

  991. Vecchi, I. A note on entropy compactification for scalar conservation laws. Nonlinear Anal. 15 (1990), 693–695.

    Article  MATH  MathSciNet  Google Scholar 

  992. Venttsel’, T.D. Estimates of solutions of the one-dimensional system of equations of gas dynamics with “viscosity” nondepending on “viscosity”. Soviet Math. J. 31 (1985), 3148–3153.

    Google Scholar 

  993. Vincenti, W.G. and L.H. Kruger Introduction to Physical Gas Dynamics. New York: Wiley, 1965.

    Google Scholar 

  994. Volpert, A.I. The spaces BV and quasilinear equations. Mat. Sbornik 73 (1967), 255–302. English translation: Math. USSR Sbornik 2 (1967), 225–267.

    MATH  MathSciNet  Google Scholar 

  995. Wagner, D.H. The Riemann problem in two space dimensions for a single conservation law. SIAM J. Math. Anal. 14 (1983), 534–559.

    Article  MATH  MathSciNet  Google Scholar 

  996. Wagner, D.H. Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Diff. Eqs. 68 (1987), 118–136.

    Article  MATH  Google Scholar 

  997. Wagner, D.H. Conservation laws, coordinate transformations, and differential forms. Hyperbolic Problems: Theory, Numerics, Applications, pp. 471–477, eds. J. Glimm, M.J. Graham, J.W. Grove and B.J. Plohr. Singapore: World Scientific, 1996.

    Google Scholar 

  998. Wang, Chao Chen and C. Truesdell Introduction to Rational Elasticity. Leyden: Noordhoff, 1973.

    Google Scholar 

  999. Wang, Dehua Global solutions and stability for self-gravitating isentropic gases. J. Math. Anal. Appl. 229 (1999), 530–542.

    Article  MATH  MathSciNet  Google Scholar 

  1000. Wang, Zhen and Xiaqi Ding Uniqueness of generalized solution for the Cauchy problem of transportation equations. Acta Math. Scientia 17 (1997), 341–352.

    MathSciNet  Google Scholar 

  1001. Wang, Zhen, Huang, Feimin and Xiaqi Ding On the Cauchy problem of transportation equations. Acta Math. Appl. Sinica 13 (1997), 113–122.

    MathSciNet  Google Scholar 

  1002. Weber, H. Die Partiellen Differential-Gleichungen der Mathematischen Physik, Zweiter Band, Vierte Auflage. Braunschweig: Friedrich Vieweg und Sohn, 1901.

    Google Scholar 

  1003. Weinberger, H. Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity. Ann. Inst. Henri Poincaré 7 (1990), 407–425.

    MATH  MathSciNet  Google Scholar 

  1004. Wendroff, B. The Riemann problem for materials with nonconvex equation of state I;II. J. Math. Anal. Appl. 38 (1972), 454–466; 640–658.

    MATH  MathSciNet  Google Scholar 

  1005. Wendroff, B. An analysis of front tracking for chromatography. Acta Appl. Math. 30 (1993), 265–285.

    Article  MATH  MathSciNet  Google Scholar 

  1006. Weyl, H. Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2 (1949), 103–122.

    MATH  MathSciNet  Google Scholar 

  1007. Whitham, G.B. The flow pattern of a supersonic projectile. Comm. Pure Appl. Math. 5 (1952), 301–348.

    MATH  MathSciNet  Google Scholar 

  1008. Whitham, G.B. Linear and Nonlinear Waves. New York: Wiley-Interscience, 1974.

    Google Scholar 

  1009. Williams, F.A. Combustion Theory. Reading, MA: Addison-Wesley, 1965.

    Google Scholar 

  1010. Wu, Zhuo-Qun The ordinary differential equation with discontinuous right-hand members and the discontinuous solutions of the quasilinear partial differential equations. Acta Math. Sinica 13 (1963), 515–530. English translation: Scientia Sinica 13 (1964), 1901–1907.

    MATH  Google Scholar 

  1011. Xin, Zhou Ping On the linearized stability of viscous shock profiles for systems of conservation laws. J. Diff. Eqs. 100 (1992), 119–136.

    Article  MATH  MathSciNet  Google Scholar 

  1012. Xin, Zhou Ping Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases. Comm. Pure Appl. Math. 46 (1993), 621–665.

    MATH  MathSciNet  Google Scholar 

  1013. Xin, Zhou Ping On nonlinear stability of contact discontinuities. Hyperbolic Problems: Theory, Numerics, Applications, pp. 249–257, eds. J. Glimm, M.J. Graham, J.W. Grove and B.J. Plohr. Singapore: World Scientific, 1996.

    Google Scholar 

  1014. Xin, Zhou Ping Viscous boundary layers and their stability. J. PDE 11 (1998), 97–124.

    MATH  MathSciNet  Google Scholar 

  1015. Xu, Xiangsheng Asymptotic behavior of solutions of hyperbolic conservation laws u t +(um)x = 0 as m → ∞ with inconsistent initial values. Proc. Royal Soc. Edinburgh 113A (1989), 61–71.

    Google Scholar 

  1016. Yan, Baisheng Cavitation solutions to homogeneous van der Waals type fluids involving phase transitons. Quart. Appl. Math. 53 (1995), 721–730.

    MATH  MathSciNet  Google Scholar 

  1017. Yang, Tong A functional integral approach to shock wave solutions of the Euler equations with spherical symmetry, I. Comm. Math. Phys. 171 (1995), 607–638. II. J. Diff. Eqs. 130 (1996), 162–178.

    Article  MATH  MathSciNet  Google Scholar 

  1018. Yang, Tong, Zhu, Changjiang and Huijiang Zhao Compactness framework of Lp approximate solutions for scalar conservation laws. J. Math. Anal. Appl. 220 (1998), 164–186.

    Article  MathSciNet  Google Scholar 

  1019. Yang, Xiaozhou Multi-dimensional Riemann problem of scalar conservation law. Acta Math. Scientia 19 (1999), 190–200.

    MATH  Google Scholar 

  1020. Yang, Xiaozhou and Feimin Huang Two-dimensional Riemann problems of simplified Euler equation. Chinese Sci. Bull. 43 (1998), 441–444.

    MathSciNet  Google Scholar 

  1021. Ying, Lung An and Ching Hua Wang Global solutions of the Cauchy problem for a nonhomogeneous quasilinear hyperbolic system. Comm. Pure Appl. Math. 33 (1980), 579–597.

    MathSciNet  Google Scholar 

  1022. Yong, Wen-An A simple approach to Glimm’s interaction estimates. Appl. Math. Letters 12 (1999), 29–34.

    MATH  MathSciNet  Google Scholar 

  1023. Yong, Wen-An Boundary conditions for hyperbolic systems with stiff source terms. Indiana U. Math. J. 48 (1999), 115–137.

    MATH  MathSciNet  Google Scholar 

  1024. Yong, Wen-An Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Diff. Eqs. 155 (1999), 89–132.

    Article  MATH  MathSciNet  Google Scholar 

  1025. Yong, Wen-An Basic aspects of hyperbolic relaxation systems. Advances in the Theory of ShockWaves, pp. 259–305, ed. H. Freistühler and A. Szepessy. Boston: Birkhauser, 2001.

    Google Scholar 

  1026. Yong, Wen-An Basic structures of hyperbolic relaxation systems. Proc. Royal Soc. Edinburgh 132A (2002), 1259–1274.

    MathSciNet  Google Scholar 

  1027. Yong, Wen-An Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172 (2004), 247–266.

    Article  MATH  MathSciNet  Google Scholar 

  1028. Young, L.C. Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III, 30 (1937), 212–234.

    MATH  Google Scholar 

  1029. Young, R. Sup-norm stability for Glimm’s scheme. Comm. Pure Appl. Math. 46 (1993), 903–948.

    MATH  MathSciNet  Google Scholar 

  1030. Young, R. Exact solutions to degenerate conservation laws. SIAM J. Math. Anal. 30 (1999), 537–558.

    Article  MATH  MathSciNet  Google Scholar 

  1031. Young, R. Sustained solutions for conservation laws. Comm. PDE. 26 (2001), 1–32.

    MATH  Google Scholar 

  1032. Young, R. Periodic solutions to conservation laws. Contemp. Math. 255 (1998), 239–256.

    Google Scholar 

  1033. Young, R. Blowup in hyperbolic conservation laws. Contemp. Math. 327 (2003), 379–387.

    MATH  Google Scholar 

  1034. Young, R. Blowup of solutions and boundary instabilities in nonlinear hyperbolic equations. Comm. Math. Sci. 1 (2003), 269–292.

    Google Scholar 

  1035. Young, R. Isentropic gas dynamics with arbitrary BV data. (In preparation).

    Google Scholar 

  1036. Young, R. and W. Szeliga Blowup with small BV data in hyperbolic conservation laws. Arch. Rational Mech. Anal. (To appear).

    Google Scholar 

  1037. Yu, Shih-Hsien Zero dissipation limit to solutions with shocks for systems of hyperbolic conservation laws. Arch. Rational Mech. Anal. 146 (1999), 275–370.

    Article  MATH  Google Scholar 

  1038. Yu, Shih-Hsien Hydrodynamic limits with shock waves of the Boltzmann equation. Comm. Pure Appl. Math. 58 (2005), 409–443.

    Article  MATH  MathSciNet  Google Scholar 

  1039. Zeldovich, Ya. and Yu. Raizer Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. I-II. New York: Academic Press, 1966-1967.

    Google Scholar 

  1040. Zeldovich, Ya. and Yu. Raizer Elements of Gas Dynamics and the Classical Theory of Shock Waves. New York: Academic Press, 1968.

    Google Scholar 

  1041. Zeng, Yanni Convergence to diffusion waves of solutions to nonlinear viscoelastic model with fading memory. Comm. Math. Phys. 146 (1992), 585–609.

    Article  MATH  MathSciNet  Google Scholar 

  1042. Zeng, Yanni L1 asymptotic behavior of compressible isentropic viscous 1 — D flow. Comm. Pure Appl. Math. 47 (1994), 1053–1082.

    MATH  MathSciNet  Google Scholar 

  1043. Zeng, Yanni Lp asymptotic behavior of solutions to hyperbolic-parabolic systems of conservation laws. Arch. Math. 66 (1996), 310–319.

    Article  MATH  Google Scholar 

  1044. Zhang, Peng, Li, Jiequan and Tong Zhang On two-dimensional Riemann problems for pressure-gradient equations of the Euler system. Discrete Contin. Dynam. Systems 4 (1998), 609–634.

    MathSciNet  Google Scholar 

  1045. Zhang, Peng and Tong Zhang Generalized characteristic analysis and Guckenheimer structure. J. Diff. Eqs. 152 (1999), 409–430.

    Article  Google Scholar 

  1046. Zhang, Tong and Yu Xi Zheng Two-dimensional Riemann problem for a single conservation law. Trans. AMS 312 (1989), 589–619.

    MathSciNet  Google Scholar 

  1047. Zhang, Tong and Yu Xi Zheng Axisymmetric solutions of the Euler equations for polytropic gases. Arch. Rational Mech. Anal. 142 (1998), 253–279.

    Article  MathSciNet  Google Scholar 

  1048. Zhang, Yongqian Global existence of steady supersonic potential flow past a curved wedge with a piecewise smooth boundary. SIAM J. Math. Anal. 31 (1999), 166–183.

    Article  MATH  MathSciNet  Google Scholar 

  1049. Zhang, Yongqian Steady supersonic flow past an almost straight wedge with large vertex angle. J. Diff. Eqs. 192 (2003), 1–46.

    Article  Google Scholar 

  1050. Zhao, Huijiang Global existence in L4 for a nonstrictly hyperbolic conservation law. Quart. Appl. Math. 58 (2000), 627–660.

    MATH  MathSciNet  Google Scholar 

  1051. Zheng, Songmu Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems. Harlow: Longman, 1995.

    Google Scholar 

  1052. Zheng, Yuxi Systems of Conservation Laws: Two-Dimensional Riemann Problems. Boston: Birkhauser, 2000.

    Google Scholar 

  1053. Zhu, Guangshan and T.C.T. Ting Classification of 2×2 non-strictly hyperbolic systems for plane waves in isotropic elastic solids. Int. J. Eng. Sci. 27 (1989), 1621–1638.

    MathSciNet  Google Scholar 

  1054. Ziemer, W.P. Cauchy flux and sets of finite perimenter. Arch. Rational Mech. Anal. 84 (1983), 189–201.

    Article  MATH  MathSciNet  Google Scholar 

  1055. Ziemer, W.P. Weakly Differentiable Functions. New York: Springer, 1989.

    Google Scholar 

  1056. Zumbrun, K. N-waves in elasticity. Comm. Pure Appl. Math. 46 (1993), 75–95.

    MATH  MathSciNet  Google Scholar 

  1057. Zumbrun, K. Decay rates for nonconvex systems of conservation laws. Comm. Pure Appl. Math. 46 (1993), 353–386.

    MATH  MathSciNet  Google Scholar 

  1058. Zumbrun, K. Multidimensional stability of planar viscous shock waves. Advances in the Theory of Shock Waves, pp. 307–516, ed. H. Freistühler and A. Szepessy. Boston: Birkhauser, 2001.

    Google Scholar 

  1059. Zumbrun, K. and P. Howard Pointwise semigroup methods and stability of viscous shock waves. Indiana U. Math. J. 47 (1998), 63–85.

    MathSciNet  Google Scholar 

  1060. Zumbrun, K. and D. Serre Viscous and inviscid stability of multidimensional planar shock fronts. Indiana U. Math. J. 48 (1999), 932–937.

    MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Compensated Compactness. In: Hyberbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29089-3_16

Download citation

Publish with us

Policies and ethics