Skip to main content

Connexin Modulators of Endocrine Function

  • Chapter
Gap Junctions in Development and Disease

Abstract

The emergence of multicellular organisms has necessitated the specialization of short- and long-range chemical signaling systems, including that provided by the endocrine system. Conversely, the existence of an endocrine system conceptually demands a multicellular organism, to which proper signaling usually also imposes a multicellular gland. Accordingly, the secretory cells of all endocrine glands have developed mechanisms for interacting with adjacent and distant cells. With evolution, such mechanisms have diversified and have been progressively integrated in a complex regulatory network, whereby individual endocrine cells sense the state of activity of their neighbors and regulate accordingly their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the hormone-producing cells of all glands so far investigated in vertebrates. In a few instances, these channels have also been documented between the endocrine cells and nearby target cells. Here, we have reviewed the distribution of connexins in the mammalian endocrine system, and have discussed the recent evidence pointing to the participation of these proteins in the functioning of endocrine cells, and on the action of hormones on specific target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosco D, Meda P (1991) Actively synthesizing B-cells secrete preferentially during glucose stimulation. Endocrinology 129:3157–3166

    PubMed  Google Scholar 

  • Bosco D, Meda P (1998) Reconstructing islet function in vitro. Adv Exp Med Biol 426:285–298

    Google Scholar 

  • Bosco D, Orci L, Meda P (1989) Homologous but not heterologous contact increases the insulin secretion of individual secretory cells. Exp Cell Res 184:72–80

    Article  PubMed  Google Scholar 

  • Calabrese A, Serre-Beinier V, Zhang M, Caton D, Mas C, Satin LS, Meda P (2003) Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion of MIN6 cells Diabetes 52:417–424

    PubMed  Google Scholar 

  • Calabrese A, Caton D, Meda P. (2004) Differentiating the effects of Cx36 and E-cadherin for proper insulin secretion of MIN6 cells. Exp Cell Res 294:379–391

    Article  PubMed  Google Scholar 

  • Caton D, Calabrese A, Mas C, Serre-Beinier V, Charollais A, Caille D, Zufferey R, Trono D, Meda P (2003) Lentivirus-mediated transduction of connexin cDNAs shows level-and isoform-specific alterations in insulin secretion of primary pancreatic beta-cells. J Cell Sci 116:2285–2294

    PubMed  Google Scholar 

  • Charollais A, Gjinovci A, Huarte J, Bauquis J, Nadal A, Martin F, Andreu E, Sanchez-Andres JV, Calabrese A, Bosco D, Soria B, Wollheim CB, Herrera PL, Meda P (2000) Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J Clin Invest 106:235–243

    PubMed  Google Scholar 

  • Cronier L, Bastide B, Herve JC, Deleze J, Malassine A (1994) Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin. Endocrinology 135:402–408

    Article  PubMed  Google Scholar 

  • Cronier L, Frendo JL, Defamie N, Pidoux G, Bertin G, Guibourdenche J, Pointis G, Malassine A (2003) Requirement of gap junctional intercellular communication for human villous trophoblast differentiation. Biol Reprod 69:1472–1480

    Article  PubMed  Google Scholar 

  • Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci USA 101:12364–12369

    Article  PubMed  Google Scholar 

  • Davis KT, Prentice N, Gay VL, Murray SA (2002) Gap junction proteins and cell-cell communication in the three functional zones of the adrenal gland. J Endocrinol 173:13–21

    Article  PubMed  Google Scholar 

  • Degen J, Meier C, Van Der Giessen RS, Sohl G, Petrasch-Parwez E, Urschel S, Dermietzel R, Schilling K, De Zeeuw CI, Willecke K (2004) Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. J Comp Neurol 473:511–525

    Article  PubMed  Google Scholar 

  • Fauquier T, Guerineau NC, McKinney RA, Bauer K, Mollard P (2001) Folliculostellate cell network: a route for long-distance communication in the anterior pituitary. Proc Natl Acad Sci USA 98:8891–8896

    Article  PubMed  Google Scholar 

  • Flachon V, Tonoli H, Selmi-Ruby S, Durand C, Rabilloud R, Rousset B, Munari-Silem Y (2002) Thyroid cell proliferation in response to forced expression of gap junction proteins. Eur J Cell Biol 81:243–252

    PubMed  Google Scholar 

  • Frendo JL, Cronier L, Bertin G, Guibourdenche J, Vidaud M, Evain-Brion D, Malassine A (2003). Involvement of connexin 43 in human trophoblast cell fusion and differentiation. J Cell Sci 116:3413–3421

    PubMed  Google Scholar 

  • Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459

    Article  PubMed  Google Scholar 

  • Goldenberg RC, Fortes FS, Cristancho JM, Morales MM, Franci CR, Varanda WA, Campos de Carvalho AC (2003) Modulation of gap junction mediated intercellular communication in TM3 Leydig cells. J Endocrinol 177:327–335

    Article  PubMed  Google Scholar 

  • Granot I, Dekel N (2002) The ovarian gap junction protein connexin43: regulation by gonadotropins. Trends Endocrinol Metab 13:310–313

    PubMed  Google Scholar 

  • Grazul-Bilska AT, Reynolds LP, Bilski JJ, Redmer DA (2001) Effects of second messengers on gap junctional intercellular communication of ovine luteal cells throughout the estrous cycle. Biol Reprod 65:777–783

    Article  PubMed  Google Scholar 

  • Green LM, Murray DK, Tran DT, Nelson GA, Shah MM, Luben RA (2001) A spontaneously arising mutation in connexin32 with repeated passage of FRTL-5 cells coincides with increased growth rate and reduced thyroxine release. J Mol Endocrinol 27:145–163

    Article  PubMed  Google Scholar 

  • Green LM, Tran DT, Murray DK, Rightnar SS, Todd S, Nelson GA (2002) Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32. Radiat Res 158:475–485

    PubMed  Google Scholar 

  • Gros D, Dupays L, Alcolea S, Meysen S, Miquerol L, Theveniau-Ruissy M (2004) Genetically modified mice: tools to decode the functions of connexins in the heart-new models for cardiovascular research. Cardiovasc Res 62:299–308

    Article  PubMed  Google Scholar 

  • Grummer R, Winterhager E (1998) Regulation of gap junction connexins in the endometrium during early pregnancy. Cell Tissue Res 293:189–194

    Article  PubMed  Google Scholar 

  • Grummer R, Traub O, Winterhager E (1999) Gap junction connexin genes cx26 and cx43 are differentially regulated by ovarian steroid hormones in rat endometrium. Endocrinology 140:2509–2516

    Article  PubMed  Google Scholar 

  • Grummer R, Hewitt SW, Traub O, Korach KS, Winterhager E. (2004) Different regulatory pathways of endometrial connexin expression: preimplantation hormonal-mediated pathway versus embryo implantation-initiated pathway. Biol Reprod 71:273–281

    PubMed  Google Scholar 

  • Guerineau NC, Bonnefont X, Stoeckel L, Mollard P (1998) Synchronized spontaneous Ca2+ transients in acute anterior pituitary slices. J Biol Chem 273:10389–10395

    Article  PubMed  Google Scholar 

  • Guerrier A, Fonlupt P, Morand I, Rabilloud R, Audebet C, Krutovskikh V, Gros D, Rousset B, Munari-Silem Y (1995) Gap junctions and cell polarity: connexin32 and connexin43 expressed in polarized thyroid epithelial cells assemble into separate gap junctions, which are located in distinct regions of the lateral plasma membrane domain. J Cell Sci 108:2609–2617

    PubMed  Google Scholar 

  • Guldenagel M, Ammermuller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044

    PubMed  Google Scholar 

  • Haefliger JA, Demotz S, Braissant O, Suter E, Waeber B, Nicod P, Meda P (2001) Connexins 40 and 43 are differentially regulated within the kidneys of rats with renovascular hypertension. Kidney Int 60:190–201

    Article  PubMed  Google Scholar 

  • Haefliger JA, Nicod P, Meda P (2004) Contribution of connexins to the function of the vascular wall. Cardiovasc Res 62:345–356

    PubMed  Google Scholar 

  • Haefliger JA, Krattinger N, Martin D, Pedrazzini T, Capponi A, Döring B, Plum A, Charollais A, Willecke K, Meda P (2005) Connexin43 controls renin-dependent hypertension in mice. (in press)

    Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  Google Scholar 

  • Houang M, Gourmelen M, Moatti L, Le BY, Garabedian EN, Denoyelle F (2002) Hypogonadotrophic hypogonadism associated with prelingual deafness due to a connexin 26 gene mutation. J Pediatr Endocrinol Metab 15:219–223

    PubMed  Google Scholar 

  • Houghton FD, Thonnissen E, Kidder GM, Naus CC, Willecke K, Winterhager E (1999) Doubly mutant mice, deficient in connexin32 and-43, show normal prenatal development of organs where the two gap junction proteins are expressed in the same cells. Dev Genet 24:5–12

    Article  PubMed  Google Scholar 

  • Huang SH, Wu JC, Hwang RD, Yeo HL, Wang SM (2003) Effects of 18beta-glycyrrhetinic acid on the junctional complex and steroidogenesis in rat adrenocortical cells. J Cell Biochem 90:33–41

    Article  PubMed  Google Scholar 

  • Johnson ML, Redmer DA, Reynolds LP, Bilski JJ, Grazul-Bilska AT (2002) Gap junctional intercellular communication of bovine granulosa and thecal cells from antral follicles: effects of luteinizing hormone and follicle-stimulating hormone. Endocrine 18:261–270

    Article  PubMed  Google Scholar 

  • Kanno T, Gopel SO, Rorsman P, Wakui M (2002) Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on alpha-, beta-and delta-cells of the pancreatic islet. Neurosci Res 42:79–90

    Article  PubMed  Google Scholar 

  • Kawai K, Ipp E, Orci L, Perrelet A, Unger RH (1982) Circulating somatostatin acts on the islets of Langerhans by way of a somatostatin-poor compartment. Science 218:477–478

    PubMed  Google Scholar 

  • Khan-Dawood FS, Yang J, Dawood MY (1996) Expression of gap junction protein connexin-43 in the human and baboon (Papio anubis) corpus luteum. J Clin Endocrinol Metab 81:835–842

    Article  PubMed  Google Scholar 

  • Khan-Dawood FS, Yang J, Dawood MY (1998) Hormonal regulation of connexin-43 in baboon corpora lutea. J Endocrinol 157:405–414

    PubMed  Google Scholar 

  • Kidder GM, Mhawi AA (2002) Gap junctions and ovarian folliculogenesis. Reproduction 123:613–620

    Article  PubMed  Google Scholar 

  • Klee P, Charollais A, Caille D, Meda P (2004) Role of connexin proteins in the protection of pancreatic β-cells against cytotoxic attacks. Proceedings Prien post-EASD meeting: http://www.mh-hannover.de/institute/clinbiochemistry/Post_EASD2004/poster.html

    Google Scholar 

  • Klinger FG, De Felici M (2002) In vitro development of growing oocytes from fetal mouse oocytes: stage-specific regulation by stem cell factor and granulosa cells. Dev Biol 244:85–95

    Article  PubMed  Google Scholar 

  • Le Gurun S, Martin D, Formenton A, Maechler P, Caille D, Waeber G, Meda P, Haefliger JA. (2003) Connexin-36 contributes to control function of insulin-producing cells. J Biol Chem 278:37690–37697

    Article  PubMed  Google Scholar 

  • LeRoith D (1990) Are all cells “endocrine”? In: Becker KL et al (eds) Principles and practice of endocrinology and metabolism, JB Lippincott, Philadelphia, pp 10–13

    Google Scholar 

  • Levavi-Sivan B, Bloch CL, Gutnick MJ, Fleidervish IA (2005) Electrotonic coupling in the anterior pituitary of a teleost fish. Endocrinology (in press)

    Google Scholar 

  • Li X, Olson C, Lu S, Nagy JI (2005) Association of connexin36 with zonula occludens-1 in HeLa cells, beta TC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol 122:485–498

    Article  Google Scholar 

  • Martin AO, Mathieu MN, Chevillard C, Guerineau NC (2001) Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: A role in catecholamine release. J Neurosci 21:5397–5405

    PubMed  Google Scholar 

  • Martin D, Tawadros T, Meylan L, Abderrahmani A, Condorelli DF, Waeber G, Haefliger JA. (2003) Critical role of the transcriptional repressor neuron-restrictive silencer factor in the specific control of connexin36 in insulin-producing cell lines. J Biol Chem 278:53082–53089

    Article  PubMed  Google Scholar 

  • Martin AO, Mathieu MN, Guerineau NC (2003) Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells. J Neurosci 23:3669–3678

    PubMed  Google Scholar 

  • Mas C, Taske N, Deutsch S, Guipponi M, Thomas P, Covanis A, Friis M, Kjeldsen MJ, Pizzolato GP, Villemure JG, Buresi C, Rees M, Malafosse A, Gardiner M, Antonarakis SE, Meda P (2004) Association of the connexin36 gene with juvenile myoclonic epilepsy. J Med Genet 41:e93–e98

    Article  PubMed  Google Scholar 

  • Matesic DF, Germak JA, Dupont E, Madhukar BV (1993) Immortalized hypothalamic luteinizing hormone-releasing hormone neurons express a connexin26-like protein and display functional gap junction coupling assayed by fluorescence recovery after photobleaching. Neuroendocrinology 58:485–492

    PubMed  Google Scholar 

  • Matesic D, Attardi B, Dellovade T, Pfaff D, Germak J (1997) Differential LHRH secretion, dye coupling, and protein expression in two morphologically distinct cell types identified in GT1-7 cultures. J Neuroendocrinol 9:467–478

    PubMed  Google Scholar 

  • Mayerhofer A, Garfield RE (1995) Immunocytochemical analysis of the expression of gap junction protein connexin 43 in the rat ovary. Mol Reprod Dev 41:331–338

    Article  PubMed  Google Scholar 

  • McDonald TJ, Li C, Massmann GA, Figueroa JP (2003) Connexin 43 ontogeny in fetal sheep adrenal glands. Steroids 68:613–620

    Article  PubMed  Google Scholar 

  • Meda P (1996) The role of gap junction membrane channels in secretion and hormonal action. J Bioenerg Biomembr 28:369–377

    Article  PubMed  Google Scholar 

  • Meda P (1997) Intercellular communication and insulin secretion. In: Zahnd GR, Wollheim CB (eds) Contributions of physiology to the understanding of diabetes. Springer, Berlin Heidelberg New York, pp 24–42

    Google Scholar 

  • Meda P, Spray DC (2000) Gap junction function. Adv Mol Cell Biol 30:263–322

    Google Scholar 

  • Meda P, Bosco D (2001) Communication of islet cells: molecules, mechanisms, functions. In: Habener JF, Hussein M (eds) Molecular basis of endocrine pancreas development and functions, Kluwer, Norwell, pp 138–159

    Google Scholar 

  • Meda P, Halban P, Perrelet A, Renold AE, Orci L (1980) Gap junction development is correlated with insulin content in the pancreatic B cell. Science 209:1026–1028

    PubMed  Google Scholar 

  • Meda P, Perrelet A, Orci, L (1984) Gap junctions and cell-to-cell coupling in endocrine glands. In: Satir BH (ed) Modern cell biology. Alan Liss, New York, vol 3, pp 131–196

    Google Scholar 

  • Meda P, Santos RM, Atwater I (1986) Direct identification of electrophysiologically monitored cells within intact mouse islets of Langerhans. Diabetes 35:232–236

    PubMed  Google Scholar 

  • Meda P, Bosco D, Chanson M, Giordano E, Vallar L, Wollheim C, Orci L (1990) Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 86:759–768

    PubMed  Google Scholar 

  • Meda P, Pepper MS, Traub O, Willecke K, Gros D, Beyer E, Nicholson B, Paul D, Orci L (1993) Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology 133:2371–2378

    Article  PubMed  Google Scholar 

  • Morand I, Fonlupt P, Guerrier A, Trouillas J, Calle A, Remy C, Rousset B, Munari-Silem Y (1996) Cell-to-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells. Endocrinology 137:3356–3367

    Article  PubMed  Google Scholar 

  • Moreno AP, Berthoud VM, Perez-Palacios G, Perez-Armendariz EM (2005) Biophysical evidence that connexin 36 forms functional gap junction channels between pancreatic mouse beta-cells. Am J Physiol Endocrinol Metab (in press)

    Google Scholar 

  • Munari-Silem Y, Audebet C, Rousset B (1991) Hormonal control of cell to cell communication: regulation by thyrotropin of the gap junction-mediated dye transfer between thyroid cells. Endocrinology 128:3299–3309

    PubMed  Google Scholar 

  • Munari-Silem Y, Guerrier A, Fromaget C, Rabilloud R, Gros D, Rousset B (1994) Differential control of connexin-32 and connexin-43 expression in thyroid epithelial cells: evidence for a direct relationship between connexin-32 expression and histiotypic morphogenesis. Endocrinology 135:724–734

    Article  PubMed  Google Scholar 

  • Munari-Silem Y, Lebrethon MC, Morand I, Rousset B, Saez JM (1995) Gap junction-mediated cell-to-cell communication in bovine and human adrenal cells. A process whereby cells increase their responsiveness to physiological corticotropin concentrations. J Clin Invest 95:1429–1439

    PubMed  Google Scholar 

  • Munari-Silem Y, Rousset B (1996) Gap junction-mediated cell-to-cell communication in endocrine glands — molecular and functional aspects: a review. Eur J Endocrinol 135:251–264

    PubMed  Google Scholar 

  • Murray SA, Oyoyo UA, Pharrams SY, Kumar NM, Gilula NB (1995) Characterization of gap junction expression in the adrenal gland. Endocr Res 21:221–229

    PubMed  Google Scholar 

  • Murray SA, Davis K, Gay V (2003) ACTH and adrenocortical gap junctions. Microsc Res Tech 61:240–246

    Article  PubMed  Google Scholar 

  • Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev 47:191–215

    Article  PubMed  Google Scholar 

  • Nelles E, Butzler C, Jung D, Temme A, Gabriel HD, Dahl U, Traub O, Stumpel F, Jungermann K, Zielasek J, Toyka KV, Dermietzel R, Willecke K (1996). Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc Natl Acad Sci USA 93:9565–9570

    Article  PubMed  Google Scholar 

  • Niessen H, Harz H, Bedner P, Kramer K, Willecke K (2000) Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci 113:1365–1372

    PubMed  Google Scholar 

  • Orci L, Malaisse-Lagae F, Ravazzola M, Rouiller D, Renold AE, Perrelet A, Unger R (1975) A morphological basis for intercellular communication between alpha-and beta-cells in the endocrine pancreas. J Clin Invest 56:1066–1070

    PubMed  Google Scholar 

  • Oyoyo UA, Shah US, Murray SA (1997) The role of alpha1 (connexin-43) gap junction expression in adrenal cortical cell function. Endocrinology 138:5385–5399

    Article  PubMed  Google Scholar 

  • Patel YC, Amherdt M, Orci L (1982) Quantitative electron microscopic autoradiography of insulin, glucagon, and somatostatin binding sites on islets. Science 217:1155–1156

    PubMed  Google Scholar 

  • Persson PB (2003) Renin: origin, secretion and synthesis. J Physiol 552:667–671

    Article  PubMed  Google Scholar 

  • Petersen OH (1980) The electrophysiology of gland cells. Academic Press, London

    Google Scholar 

  • Philippe J, Giordano E, Gjinovci A, Meda P(1992) Cyclic adenosine monophosphate prevents the glucocorticoid-mediated inhibition of insulin gene expression in rodent islet cells. J Clin Invest 90:2228–2233

    PubMed  Google Scholar 

  • Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10:1083–1091

    Article  PubMed  Google Scholar 

  • Quesada I, Fuentes E, Andreu E, Meda P, Nadal A, Soria B (2003) On-line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells. Am J Physiol Endocrinol Metab 284:E980–E987

    PubMed  Google Scholar 

  • Ravier MA, Güldenagel M, Charollais A, Gjinovci A, Caille D, Söhl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of Connexin36 channels alters β-cell coupling, synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes (in press)

    Google Scholar 

  • Risek B, Gilula NB (1991) Spatiotemporal expression of three gap junction gene products involved in fetomaternal communication during rat pregnancy. Development 113:165–181

    PubMed  Google Scholar 

  • Risek B, Guthrie S, Kumar N, Gilula NB (1990) Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol 110:269–282

    Article  PubMed  Google Scholar 

  • Rukstalis JM, Kowalik A, Zhu L, Lidington D, Pin CL, Konieczny SF (2003) Exocrine specific expression of Connexin32 is dependent on the basic helix-loop-helix transcription factor Mist1. J Cell Sci 116:3315–3325

    Article  PubMed  Google Scholar 

  • Saez JC, Berthoud VM, Kadle R, Traub O, Nicholson BJ, Bennett MV, Dermietzel R (1991) Pinealocytes in rats: connexin identification and increase in coupling caused by norepinephrine. Brain Res 568:265–275

    Article  PubMed  Google Scholar 

  • Saez JC, Martinez AD, Branes MC, Gonzalez HE (1998). Regulation of gap junctions by protein phosphorylation. Braz J Med Biol Res 31:593–600

    PubMed  Google Scholar 

  • Sakuma E, Soji T, Herbert DC (2001) Effects of hydrocortisone on the formation of gap junctions and the abnormal growth of cilia within the rat anterior pituitary gland: possible role of gap junctions on the regulation of cell development. Anat Rec 262:169–175

    Article  PubMed  Google Scholar 

  • Sakuma E, Herbert DC, Soji T (2003) The effects of sex steroids on the formation of gap junctions between folliculo-stellate cells; a study in castrated male rats and ovariectomized female rats. Arch Histol Cytol 66:229–238

    Article  PubMed  Google Scholar 

  • Salomon D, Meda P (1986) Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells. Exp Cell Res 162:507–520

    Article  PubMed  Google Scholar 

  • Salomon D, Masgrau E, Vischer S, Ullrich S, Dupont E, Sappino P, Saurat JH, Meda P (1994) Topography of mammalian connexins in human skin. J Invest Dermatol 103:240–247

    Article  PubMed  Google Scholar 

  • Serre-Beinier V, Le Gurun S, Belluardo N, Trovato-Salinaro A, Charollais A, Haefliger JA, Condorelli DF, Meda P (2000) Cx36 preferentially connects beta-cells within pancreatic islets. Diabetes 49:727–734

    PubMed  Google Scholar 

  • Serre-Beinier V, Mas C, Calabrese A, Caton D, Bauquis J, Caille D, Charollais A, Cirulli V, Meda P (2002) Connexins and secretion. Biol Cell 94:477–492

    Article  PubMed  Google Scholar 

  • Shah US, Murray SA (2001) Bimodal inhibition of connexin 43 gap junctions decreases ACTH-induced steroidogenesis and increases bovine adrenal cell population growth. J Endocrinol 171:199–208

    Article  PubMed  Google Scholar 

  • Shinohara K, Funabashi T, Mitushima D, Kimura F (2000) Effects of gap junction blocker on vasopressin and vasoactive intestinal polypeptide rhythms in the rat suprachiasmatic nucleus in vitro. Neurosci Res 38:43–47

    Article  PubMed  Google Scholar 

  • Shirasawa N, Mabuchi Y, Sakuma E, Horiuchi O, Yashiro T, Kikuchi M, Hashimoto Y, Tsuruo Y, Herbert DC, Soji T (2004) Intercellular communication within the rat anterior pituitary gland: X. Immunohistocytochemistry of S-100 and connexin 43 of folliculostellate cells in the rat anterior pituitary gland. Anat Rec 278:462–473

    Article  Google Scholar 

  • Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529

    Article  PubMed  Google Scholar 

  • Stagg RB, Fletcher WH (1990) The hormone-induced regulation of contact-dependent cell-cell communication by phosphorylation. Endocr Rev 11:302–325

    PubMed  Google Scholar 

  • Statuto M, Audebet C, Tonoli H, Selmi-Ruby S, Rousset B, Munari-Silem Y (1997) Restoration of cell-to-cell communication in thyroid cell lines by transfection with and stable expression of the connexin-32 gene. Impact on cell proliferation and tissue-specific gene expression. J Biol Chem 272:24710–24716

    Article  PubMed  Google Scholar 

  • Stoka AM (1999) Phylogeny and evolution of chemical communication: an endocrine approach. J Mol Endocrinol 22:207–225

    Article  PubMed  Google Scholar 

  • Stout C, Goodenough DA, Paul DL (2004) Connexins: functions without junctions. Curr Opin Cell Biol 16:507–512

    Article  PubMed  Google Scholar 

  • Taylor CP, Dudek FE (1982) A physiological test for electrotonic coupling between CA1 pyramidal cells in rat hippocampal slices. Brain Res 235:351–357

    Article  PubMed  Google Scholar 

  • Terasawa E (2001) Luteinizing hormone-releasing hormone (LHRH) neurons: mechanism of pulsatile LHRH release. Vitam Horm 63:91–129

    PubMed  Google Scholar 

  • Theis M, Mas C, Doring B, Degen J, Brink C, Caille D, Charollais A, Kruger O, Plum A, Nepote V, Herrera P, Meda P, Willecke K 2004) Replacement by a lacZ reporter gene assigns mouse connexin36, 45 and 43 to distinct cell types in pancreatic islets. Exp Cell Res 294:18–29

    Google Scholar 

  • Tonoli H, Flachon V, Audebet C, Calle A, Jarry-Guichard T, Statuto M, Rousset B, Munari-Silem Y (2000). Formation of three-dimensional thyroid follicle-like structures by polarized FRT cells made communication competent by transfection and stable expression of the connexin-32 gene. Endocrinology 141:1403–1413

    Article  PubMed  Google Scholar 

  • Vazquez-Martinez R, Shorte SL, Boockfor FR, Frawley LS (2001) Synchronized exocytotic bursts from gonadotropin-releasing hormone-expressing cells: dual control by intrinsic cellular pulsatility and gap junctional communication. Endocrinology 142:2095–2101

    Article  PubMed  Google Scholar 

  • Veenstra RD, Beblo DA, Wang HZ (1998) In: Werner R (ed) Gap junctions, IOS Press, Amsterdam, pp 40–44

    Google Scholar 

  • Vitale ML, Cardin J, Gilula NB, Carbajal ME, Pelletier RM (2001) Dynamics of connexin 43 levels and distribution in the mink (Mustela vison) anterior pituitary are associated with seasonal changes in anterior pituitary prolactin content. Biol Reprod 64:625–633

    Article  PubMed  Google Scholar 

  • Vozzi C, Ullrich S, Charollais A, Philippe J, Orci L, Meda P (1995) Adequate connexin-mediated coupling is required for proper insulin production. J Cell Biol 131:1561–1572

    Article  PubMed  Google Scholar 

  • Warn-Cramer BJ, Lau AF (2004) Regulation of gap junctions by tyrosine protein kinases. Biochim Biophys Acta 1662:81–95

    PubMed  Google Scholar 

  • Winterhager E, Stutenkemper R, Traub O, Beyer E, Willecke K (1991) Expression of different connexin genes in rat uterus during decidualization and at term. Eur J Cell Biol 55:133–142

    PubMed  Google Scholar 

  • Yamamoto T, Hossain MZ, Hertzberg EL, Uemura H, Murphy LJ, Nagy JI (1993) Connexin43 in rat pituitary: localization at pituicyte and stellate cell gap junctions and within gonadotrophs. Histochemistry 100:53–64

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klee, P. et al. (2005). Connexin Modulators of Endocrine Function. In: Winterhager, E. (eds) Gap Junctions in Development and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28621-7_9

Download citation

Publish with us

Policies and ethics