Skip to main content

Variation in heavy metal uptake by crop plants

  • Chapter
Uranium in the Environment

Abstract

Relative to heavy metal (HM) excluder plants (French bean, lupin, maize, cereals), HM sequestering crops (buckwheat, beet root species) accumulate up to the 18-fold concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn as a sum in their shoot tissue. Soil amendment with nitrogen increased HM uptake further. This is a novel treatment to make continuous phytoextraction technologies more efficient without increasing the soil’s leaching rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong J, Armstrong W (1999) Phragmites die-back: toxic effects of propionic, butyric and capronic acids in relation to soil pH. New Phytol 142: 201–217

    Article  Google Scholar 

  • Bell PF, McLaughlin MJ, Cozens G, Stevens DP, Owens G, South H (2003) Plant uptake of 14C-EDTA, 14C-citrate, and 14C-histidine from chelator-buffered and conventional hydroponic solutions. Plant Soil 253: 311–319

    Article  Google Scholar 

  • Bergmann H, Lippmann B, Leinhos V, Tiroke S, Machelett B (1999) Activation of stress resistance in plants and consequences for product quality. J Appl Bot 73: 153–161

    Google Scholar 

  • Cotton FA, Wilkinson G, Gaus PL (1987) Basic inorganic chemistry. 2nd edn. New York, USA: J. Wiley & Sons, Inc.

    Google Scholar 

  • Berthelsen BO, Lamble GM, MacDowell AA, Nicholson DG (2001) Analysis of metal speciation and distribution in symbiotic fungi (Ectomycorrhiza) studied by micro Xray absorption spectroscopy and X-ray fluorescence microscopy. In: Gobran GR, Wenzel WW, Lombi E, eds. Trace elements in the rhizosphere. Boca Raton, USA: CRC Press, 149–164

    Google Scholar 

  • Finck A (1992) Dünger und Düngung. Grundlagen und Anleitung zur Düngung der Kulturpflanzen. 2nd edn. Weinheim, Germany: VCH Verlagsgesellschaft

    Google Scholar 

  • Gramss G, Voigt K-D, Bergmann H (2003a) Irrigation with plant extracts in ecofarming increases biomass production and mineral and organic nitrogen content of crop plants. J Plant Nutr Soil Sci 166: 612–620

    Article  Google Scholar 

  • Gramss G, Voigt K-D, Bublitz F, Bergmann H (2003b) Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments. J Basic Microbiol 43: 483–498

    Article  Google Scholar 

  • Gramss G, Voigt K-D, Bergmann H (2004) Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric-acid-treated uranium-minedump soil. J Plant Nutr Soil Sci 167: 417–427

    Article  Google Scholar 

  • Gramss G, Büchel H, Bergmann H (2005) Soil treatment with nitrogen facilitates continuous phytoextraction of heavy metals. This symposium.

    Google Scholar 

  • Günther A, Bernhard G, Geipel G, Rossberg A, Reich T (2002) Uranium speciation in plants. In: Merkel BJ, Planer-Friedrich B, Wolkendorfer C, eds. Uranium in the aquatic environment. Proc. Int. Conf. Uranium Mining and Hydrology III and Int. Mine Water Assoc. Symp., Freiberg, Germany, 15–21 Sept. 2002. Berlin, Germany: Springer, 513–519

    Google Scholar 

  • Hayes MHB (1991) Influence of the acid / base status on the formation and interactions of acids and bases in soils. In: Ulrich B, Sumner ME, eds. Soil acidity. Berlin, Germany: Springer, 80–96

    Google Scholar 

  • Klose R (2004) Empfängliche Sorten. Bauernzeitung (Sachsen Regional) 9. Woche

    Google Scholar 

  • Klose R (2005) Ursa will kein Kadmium. Bauernzeitung (Sachsen Regional) 4. Woche

    Google Scholar 

  • McLaughlin MJ, Andrew SJ, Smart MK, Smolders E (1998) Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions. Plant Soil 202: 211–216

    Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34: 1527–1536

    Article  Google Scholar 

  • Salt DE (2000) Phytoextraction: present applications and future promise. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U, eds. Bioremediation of contaminated soils. New York, USA: Marcel Dekker, Inc., 729–743

    Google Scholar 

  • Schachtschabel P, Blume H-P, Brümmer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde, 14th edn. Stuttgart, Germany: Enke

    Google Scholar 

  • Schönbuchner H, Leiterer M, Machelett B, Bergmann H (2002) Mobility and plant availability of heavy metals in soils of uranium mining dumps. In: Merkel BJ, Planer-Friedrich B, Wolkendorfer C, eds. Uranium in the aquatic environment. Proc. Int. Conf. Uranium Mining and Hydrology III and Int. Mine Water Assoc. Symp., Freiberg, Germany, 15–21 Sept. 2002. Berlin, Germany: Springer, 529–536

    Google Scholar 

  • Sumner ME, Fey MV, Noble AD (1991) Nutrient status and toxicity problems in acid soils. In: Ulrich B, Sumner ME, eds. Soil acidity. Berlin, Germany: Springer, 149–182

    Google Scholar 

  • Tyler G, Olsson T (2001) Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant Soil 230: 307–321

    Article  Google Scholar 

  • Van der Lelie D (1998) Biological interactions: The role of soil bacteria in the bioremediation of heavy metal-polluted soils. In: Vangronsveld J, Cunningham SD, eds. Metal-contaminated soils: in situ inactivation and phytorestoration. Berlin, Germany: Springer, 31–50

    Google Scholar 

  • Voigt K-D, Martin M-L, Bergmann H, Gramss G (2004) Entwicklung von Grundlagen zu Sanierungstechniken für schwermetall-bzw. radionuklidkontaminierte Böden durch Nutzung des Transfers der Kontaminanten in Pflanzenbiomassen. Abschlussbericht Institut für Ernährungswissenschaften, Lehrbereich Lebensmittelkunde, Friedrich-Schiller-Universität Jena, 132 pp

    Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465: 104–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergmann, H., Voigt, KD., Machelett, B., Gramss, G. (2006). Variation in heavy metal uptake by crop plants. In: Merkel, B.J., Hasche-Berger, A. (eds) Uranium in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28367-6_45

Download citation

Publish with us

Policies and ethics