Skip to main content

Earthworm Gut Microbial Biomes: Their Importance to Soil Microorganisms, Denitrification, and the Terrestrial Production of the Greenhouse Gas N2O

  • Chapter
Intestinal Microorganisms of Termites and Other Invertebrates

Part of the book series: Soil Biology ((SOILBIOL,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Barois I, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol Bichem 18:539–541

    Google Scholar 

  • Bassalik K (1913) Ãœber Silikatzersetzung durch Bodenbakterien. Z Gärungsphysiol 2:1–32

    CAS  Google Scholar 

  • Baumann B, Snozzi M, Zehnder AJB, van der Meer JR (1996) Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178:4367–4374

    PubMed  CAS  Google Scholar 

  • Baumann B, van der Meer JR, Snozzi M, Zehnder AJB (1997) Inhibition of denitrification activity but not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH. Anton Leeuw Int J G 72:183–189

    CAS  Google Scholar 

  • Bergey DH, Krieg NR, Holt JG (1990) Bergey’s Manual of Systematic Bacteriology.Williams & Wilkins, Baltimore

    Google Scholar 

  • Bollmann A, Conrad R (1998) Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biol 4:387–396

    Article  Google Scholar 

  • Bonkowski M, Schaefer M (1997) Interactions between earthworms and soil protozoa: a trophic component in the soil food web. Soil Biol Biochem 29:499–502

    Article  CAS  Google Scholar 

  • Borken W, Grundel S, Beese F (2000) Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol Fertil Soils 32:142–148

    Article  CAS  Google Scholar 

  • Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman AF (ed) Soils and the greenhouse effect. John Wiley, Chichester, pp 61–127

    Google Scholar 

  • Brady NC (1990) The Nature and Properties of Soils, 10th Ed. Macmillan Publishing Co., New York, New York

    Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61:2681–2687

    CAS  PubMed  Google Scholar 

  • Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269

    Article  PubMed  CAS  Google Scholar 

  • Cai HJ, Zarda B, Mattison GR, Schönholzer F, Hahn D (2002) Fate of Protozoa transiting the digestive tract of the earthworm Lumbricus terrestris L. Pedobiologia 46:161–175

    Article  Google Scholar 

  • Christianson CB, Cho CM (1983) Chemical denitrification of nitrite in frozen soils. Soil Sci Soc Am J 47:38–42

    Article  CAS  Google Scholar 

  • Citernesi U, Neglia R, Seritti A, Lepidi AA, Filippi C, Bagnoli G, Nuti MP, Galluzzi R (1977) Nitrogen-fixation in gastro-enteric cavity of soil animals. Soil Biol Biochem 9:71–72

    Article  Google Scholar 

  • Conrad R (1995) Soil microbial processes involved in production and consumption of atmospheric trace gases. In: Jones JG (ed) Advances in microbial ecology, vol 14. Plenum Press, New York, 207–250

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microb Rev 60:609–640

    CAS  Google Scholar 

  • Curry JP (1998) Factors affecting earthworm abundance in soils. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, pp 37–64

    Google Scholar 

  • Daniel O, Anderson JM (1992) Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol Biochem 24:465–470

    Google Scholar 

  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestial ecosytems. In: Rogers JE, Whitman, WB (eds) Microbial production and consumption of greenhouse gases. American Society for Microbiology, Washington D. C.

    Google Scholar 

  • Davidson EA (1992) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci Soc Am J 56:95–102

    Article  CAS  Google Scholar 

  • Dawson RC (1948) Earthworm microbiology and the formation of water-stable soil aggregates. Proc Soil Sci Soc Am 12:512–516

    Google Scholar 

  • Day GM (1950) Influence of earthworms on soil microorganisms. Soil Sci 69:175–184

    CAS  Google Scholar 

  • Devliegher W, Verstraete W(1995) Lumbricus terrestris in a soil core experiment: Nutrient-enrichment processes (NEP) and gut-associated processes (GAP) and their effect on microbial biomass and microbial activity. Soil Biol Biochem 27:1573–1580

    Article  CAS  Google Scholar 

  • Drake HL, Küsel K, Matthies C (2004) Acetogenic Prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer, K-H, Stackebrandt E (eds.) The Prokaryotes, 3rd Edition: An Evolving Electronic Resource for the Microbiological Community, release 3.17, August 2004, Springer, New York, http://springeronline.com

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and Ecology of Earthworms. 3rd ed. Chapman & Hall, London

    Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agr Ecosys Environ 24:235–247

    Google Scholar 

  • Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW (2004) Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol Ecol 48:187–197

    CAS  PubMed  Google Scholar 

  • Elliott PW, Knight D, Anderson JM (1990) Denitrification of earthworm casts and soil from pasture under different fertilizer and drainage regimes. Soil Biol Biochem 22:601–605

    Article  CAS  Google Scholar 

  • Elliott PW, Knight D, Anderson JM (1991) Variables controlling denitrification from earthworm casts and soil in permanent pastures. Biol Fertil Soils 11:24–29

    Article  CAS  Google Scholar 

  • Felske A, Wolterink A, van Lis R, de Vos WM, Akkermans ADL (1999) Searching for the predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol Ecol 30:137–145

    PubMed  CAS  Google Scholar 

  • Ferguson SJ (1994) Denitrification and its control. Anton Leeuw Int J G 66:89–110

    Article  CAS  Google Scholar 

  • Fischer K, Hahn D, Amann RI, Daniel O, Zeyer J (1995) In-situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Can J Microbiol 41:666–673

    Article  CAS  Google Scholar 

  • Fischer K, Hahn D, Hönerlage W, Zeyer J (1997) Effect of passage through the gut of the earthworm Lumbricus terrestris L on Bacillus megaterium studied by whole cell hybridization. Soil Biol Biochem 29:1149–1152

    CAS  Google Scholar 

  • Furlong MA, Singleton DR, Coleman DC, Whitman WB (2002) Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol 68:1265–1279

    Article  PubMed  CAS  Google Scholar 

  • Garvin MH, Lattaud C, Trigo D, Lavelle P (2000) Activity of glycolytic enzymes in the gut of Hormogaster elisae (Oligochaeta, Hormogastridae). Soil Biol Biochem 32:929–934

    CAS  Google Scholar 

  • Heijnen CE, Marinissen JCY (1995) Survival of bacteria introduced into soil by means of transport by Lumbricus rubellus. Biol Fertil Soils 20:63–69

    Article  Google Scholar 

  • Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669

    PubMed  CAS  Google Scholar 

  • Hornor SG, Mitchell MJ (1981) Effect of the earthworm Eisenia foetida (Oligochaeta) on fluxes of volatile carbon and sulfur compounds from sewage sludge. Soil Biol Biochem 13:367–372

    Article  CAS  Google Scholar 

  • Ihssen J, Horn MA, Matthies C, Gößner A, Schramm A, Drake HL (2003) N2O-producing microrganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Appl Environ Microbiol 69:1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Johnson KS, Barbehenn RV (2000) Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol 46:897–903

    PubMed  CAS  Google Scholar 

  • Jolly JM, Lappinscott HM, Anderson JM, Clegg CD (1993) Scanning electron-microscopy of the gut microflora of 2 earthworms — Lumbricus terrestris and Octolasion cyaneum. Microb Ecol 26:235–245

    Article  Google Scholar 

  • Joseph AJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen P (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215

    Article  PubMed  CAS  Google Scholar 

  • Kaplan D, Hartenstein R(1977) Absence of nitrogenase and nitrate reductase in soil macroinvertebrates. Soil Sci 124:328–331

    CAS  Google Scholar 

  • Karsten GR, Drake HL (1995) Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl Environ Microbiol 61:1039–1044

    CAS  PubMed  Google Scholar 

  • Karsten GR, Drake HL (1997) Denitrifying bacteria in the earthworm gastrointestinal tract and in vivo emission of nitrous oxide (N2O) by earthworms. Appl Environ Microbiol 63:1878–1882

    CAS  PubMed  Google Scholar 

  • Kester RA, deBoer W Laanbroek HJ (1997a) Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Appl Environ Microbiol 63:3872–3877

    CAS  PubMed  Google Scholar 

  • Kester RA, Meijer ME, Libochant, J. A., De Boer W, Laanbroek HJ (1997b) Contribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil. Soil Biol Bichem 29:1655–1664

    CAS  Google Scholar 

  • Khambata SR, Bhat JV (1957) A contribution to the study of the intestinal microflora of Indian earthworms. Arch Mikrobiol 28:69–80

    Article  PubMed  CAS  Google Scholar 

  • Kroeze C, Mosier A, Bouwman L (1999) Closing the global N2O budget: a retrospective analysis 1500–1994. Global Biogeochem. Cycles 13:1–8

    Article  CAS  Google Scholar 

  • Knop J (1926) Bakterien und Bakteroiden bei Oligochäten. Z Morphol Ökol Tiere 6:588–624.

    Google Scholar 

  • Kollmannsperger F (1952) Ãœber die Bedeutung des Regenwurmes für die Fruchtbarkeit des Bodens. Dechanian 105/106:165

    Google Scholar 

  • Kristufek V, Ravasz K, Pizl V (1992) Changes in densities of bacteria and microfungi during gut transit in Lumbricus rubellus and Aporrectodea caliginosa (Oligochaeta, Lumbricidae). Soil Biol Biochem 24:1499–1500

    Google Scholar 

  • Kükenthal W, Renner M (1982) Leitfaden für das zoologische Praktikum. Gustav Fischer Verlag, Stuttgart, pp 177–191

    Google Scholar 

  • Lattaud C, Locati S, Mora P, Rouland C (1997a) Origin and activities of glycolytic enzymes in the gut of the tropical geophagus earthworm Millsonia anomala from Lamto (Cote d’Ivoire). Pedobiologia 41:242–251

    CAS  Google Scholar 

  • Lattaud C, Zhang BG, Locati S, Rouland C, Lavelle P (1997b) Activities of the digestive enzymes in the gut and in tissue culture of a tropical geophagous earthworm, Polypheretima elongata (Megascolecidae). Soil Biol Biochem 29:335–339

    Article  CAS  Google Scholar 

  • Lattaud C, Locati S, Mora P, Rouland C, Lavelle P (1998) The diversity of digestive systems in tropical geophagous earthworms. Appl Soil Ecol 9:189–195

    Article  Google Scholar 

  • Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. Plant Soil 170:23–33

    Article  CAS  Google Scholar 

  • Lavelle P, Bignell D, Lepage M (1997) Soil function in a changing world: the role of ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lee KE (1985) Earthworms. Academic Press, Sydney

    Google Scholar 

  • Lemke T, Stingl U, Egert M, Friedrich MW, Brune A (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69:6650–6658

    Article  PubMed  CAS  Google Scholar 

  • Mackie RI, Bryant MP (1994) Acetogenesis and the rumen: syntrophic relationships. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 331–364

    Google Scholar 

  • Makeschin F (1997) Earthworms (Lumbricidae: Oligochaeta): important promoters of soil development and soil fertility. In: Benckiser G (ed) Fauna in soil ecosystems. Marcel Dekker Inc., New York, pp 173–223

    Google Scholar 

  • Martin A, Cortez J, Barois I, Lavelle P (1987) Les mucus intestinaux de ver de terre moteur de leurs interactions avec la microflore. Rev Ecol Biol Sol 24:549–558

    Google Scholar 

  • Matthies C, Griesshammer A, Schmittroth M, Drake HL (1999) Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N2O) by earthworms obtained from garden and forest soils. Appl Environ Microbiol 65:3599–3604

    PubMed  CAS  Google Scholar 

  • McInerney MJ, Bryant MP (1980) Syntrophic associations of hydrogen utilizing methanogenic bacteria and hydrogen producing alcohol and fatty-acid degrading bacteria in anaerobic degradation of organic matter. In: Gottschalk G, Pfennig N Werner H (eds) Anaerobes and anaerobic infections. Gustav Fischer Verlag, Munich, pp 117–126

    Google Scholar 

  • Mendez R, Borges S, Betancourt C (2003) A microscopical view of the intestine of Onychochaeta borincana (Oligochaeta: Glossoscolecidae). Pedobiologia 47:900–903

    Article  Google Scholar 

  • Merino-Trigo A, Sampedro L, Rodriguez-Berrocal FJ, Mato S, de la Cadena MP (1999) Activity and partial characterization of xylanolytic enzymes in the earthworm Eisenia andrei fed on organic wastes. Soil Biol Bichem 31:1735–1740

    CAS  Google Scholar 

  • Michel K, Matzner E (2002) Nitrogen content of forest floor Oa layers affects carbon pathways and nitrogen mineralization. Soil Biol Bichem 34:1807–1813

    CAS  Google Scholar 

  • Mulongoy K, Bedoret A (1989) Properties of worm casts and surface soils under various plant covers in the humid tropics. Soil Biol Biochem 21:197–203

    Article  Google Scholar 

  • Otte S, Grobben NG, Robertson LA, Jetten MSM, Kuenen JG (1996) Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl Environ Microbiol 62:2421–2426

    PubMed  CAS  Google Scholar 

  • Pandazis G (1931) Zur Frage der Bakteriensymbiose bei Oligochaeten. Zentralbl Bakteriol: Parasitenkunde und Infektionskrankheiten 120:440–453

    Google Scholar 

  • Parle JN (1963a) A microbiological study of earthworm casts. J Gen Microbiol 31:13–22

    CAS  Google Scholar 

  • Parle JN (1963b) Microorganisms in the intestine of earthworms. J Gen Microbiol 31:1–13

    Google Scholar 

  • Pedersen JC, Hendriksen NB (1993) Effect of pssage through the intestinal tract of detritivore earthworms (Lumbricus spp) on the number of selected Gram-negative and total bacteria. Biol Fertil Soils 16:227–232

    Article  Google Scholar 

  • Piearce TG (1978) Gut contents of some lumbricid earthworms. Pedobiologia 18:153–157.

    Google Scholar 

  • Risal CP, Ozawa T (2002) Isolation and characterization of diazotrophs from the intestinal tract of an earthworm (Pheretima vittata). Soil Sci Plant Nutr 48:101–103

    CAS  Google Scholar 

  • Ritchie GAF, Nicholas DJD (1972) Identification of the sources of nitrous oxide produced by oxidation and reductive processes in Nitrosomonas europea. Biochem J 126:1181–1191

    PubMed  CAS  Google Scholar 

  • Rosselló-Mora R, Thamdrup B, Schäfer H, Weller R, Amann R (1999) The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Syst Appl Microbiol 22:237–248

    PubMed  Google Scholar 

  • Ruschmann G (1953) Ãœber Antibiosen und Symbiosen von Bodenmikroorganismen und ihre Bedeutung für die Bodenfruchtbarkeit. Z Acker Pfl Bau 96:201

    Google Scholar 

  • Sahrawat KL, Keeney DR (1986) Nitrous oxide emission from soils. Adv Soil Sci 4:103–148.

    Google Scholar 

  • Scheu S (1987) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol Fertil Soils 5:230–234

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry, 2nd Ed. Academic Press, San Diego, California

    Google Scholar 

  • Schönholzer F, Hahn D, Zarda B, Zeyer J (2002) Automated image analysis and in situ hybridization as tools to study bacterial populations in food resources, gut and cast of Lumbricus terrestris L. J Microbiol Meth 48:53–68

    Google Scholar 

  • Schönholzer F, Hahn D, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol Ecol 28:235–248

    Google Scholar 

  • Schramm A, Davidson SK, Dodsworth JA, Drake HL, Stahl DA, Dubilier N (2003) Acidovorax like symbionts in the nephridia of earthworms. Environ Microbiol 5:804–809

    Article  PubMed  CAS  Google Scholar 

  • Simek M, Pizl V, Chalupsky J (1991) The effect of some terrestrial oligochaeta on nitrogenase activity in the soil. Plant Soil 137:161–165

    Article  CAS  Google Scholar 

  • Singleton DR, Hendrix PF, Coleman DC, Whitman WB (2003) Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol Biochem 35:1547–1555

    Article  CAS  Google Scholar 

  • Smith SM (1983) Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity. Appl Environ Microbiol 45:1545–1547

    PubMed  CAS  Google Scholar 

  • Stöckli A (1928) Studien über den Einfluss des Regenwurmes auf die Beschaffenheit des Bodens. Landw Jb Schweiz 42:5

    Google Scholar 

  • Striganova BR, Pantoshderimova TD, Tiunov AV (1993) Comparative estimation of nitrogen-fixation activity in the intestine of various species of earthworms. Izv Akad Nauk Biol:257–263.

    Google Scholar 

  • Tate RL (1995) Soil Microbiology. John Wiley & Sons, New York

    Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley & Sons, New York, pp 179–243

    Google Scholar 

  • Tiedje JM (1994) Denitrifiers. Methods of soil analysis, part 2. Microbiological and biochemical properties, vol 5. Soil Sci Soc Am Book Series, Madison (WI), pp 245–267

    Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Anton Leeuw Int J G 48:569–583

    CAS  Google Scholar 

  • Tillinghast EK, O’Donnell R, Eves D, Calvert E Taylor J (2001) Water-soluble luminal contents of the gut of the earthworm Lumbricus terrestris L. and their physiological significance. Comp Biol Physiol A 129:345–353

    CAS  Google Scholar 

  • Toyota K, Kimura M (2000) Microbial community indigenous to the earthworm Eisenia foetida. Biol Fertil Soils 31:187–190

    Article  Google Scholar 

  • Trigo D, Lavelle P (1993) Changes in respiration rate and some physicochemical properties of soil during gut transit through Allolobophora molleri (Lumbricidae, Oligochaeta). Biol Fertil Soils 15:185–188

    Article  Google Scholar 

  • Trigo D, Lavelle P (1995) Soil changes during gut transit through Octolasion lacteum Oerly (Lumbricidae, Oligochaeta). Acta Zool Fenn 196:129–131

    Google Scholar 

  • Trigo D, Barois I, Garvin MH, Esperanza H, Irisson S Lavelle P (1999) Mutualism between earthworms and soil microflora. Pedobiologia 43:866–873

    Google Scholar 

  • Urbasek F (1990) Cellulase activity in the gut of some earthworms. Rev Ecol Biol Sol 27:21–28

    Google Scholar 

  • Urbasek F, Pizl V (1991) Activity of digestive enzymes in the gut of five earthworm species (Oligochaeta, Lumbricidae). Rev Ecol Biol Sol 28:461–468

    CAS  Google Scholar 

  • van Gansen P (1963) Structure and function of the digestive canal of the earthworm Eisenia foetida Savigny. Ann Soc R Zool Belg 93:1–120

    Google Scholar 

  • Vancleemput O, Patrick WH, McIlhenny RC (1976) Nitrite decomposition in flooded soil under different pH and redox potential conditions. Soil Sci Soc Am J 40:55–60

    CAS  Google Scholar 

  • Vinceslasakpa M, Loquet M(1995) Observation in situ of the microflora in the gut of Eisenia fetida Andrei (Lumbricidae). Eur J Soil Biol 31:101–110

    Google Scholar 

  • von Aichberger R (1914) Untersuchungen über die Ernährung des Regenwurmes. Kleinwelt 6:53.

    Google Scholar 

  • Waters, RAS (1955) Numbers and weights of earthworms under a highly productive pasture. N. Z. J. Sci. Technol. 36:516–525

    Google Scholar 

  • Webster EA, Hopkins DW (1996) Contributions of different microbial processes to N2O emission from soil under different moisture regimes. Biol Fertil Soils 22:331–335

    CAS  Google Scholar 

  • Wolin MJ, Miller TL (1994) Acetogenesis from CO2 in the human colonic ecosystem. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 365–385

    Google Scholar 

  • Wolter C, Scheu S (1999) Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia 43:891–900

    Google Scholar 

  • Yoshinari T, Knowles R (1976) Acetylene inhibition of nitrous-oxide reduction by denitrifying bacteria. Biochem Bioph Res Commun. 69:705–710

    CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drake, H.L., Schramm, A., Horn, M.A. (2006). Earthworm Gut Microbial Biomes: Their Importance to Soil Microorganisms, Denitrification, and the Terrestrial Production of the Greenhouse Gas N2O. In: König, H., Varma, A. (eds) Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28185-1_3

Download citation

Publish with us

Policies and ethics