The Role of Stress in the Induction of Haploid Microspore Embryogenesis

  • Svetlana Zoriniants
  • Alisher S. Tashpulatov
  • Erwin Heberle-Bors
  • Alisher Touraev
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 56)


Somatic Embryogenesis Cold Stress Microspore Culture Microspore Embryogenesis Preprophase Band 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19:781–792PubMedCrossRefGoogle Scholar
  2. Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263PubMedCrossRefGoogle Scholar
  3. Aubry L, Firtel R (1999) Integration of signaling networks that regulate Dictiostelium differentiation. Annu Rev Cell Dev Biol 15:231–237CrossRefGoogle Scholar
  4. Banks JA (1994) Sex-determining genes in the homosporous fern Ceratopteris. Development 120:1949–1958PubMedGoogle Scholar
  5. Benito-Moreno RM, Macke F, Hauser MT, Alwen A, Heberle-Bors E (1988) Sporophytes and gametophytes from in vitro cultured, immature tobacco pollen. In: Cresti M, Jori P, Paccini E (eds) Sexual reproduction in higher plants. Springer, Berlin Heidelberg New York, pp 137–142Google Scholar
  6. Binarova P, Hause G, Cenklova V, Cordevener JHG, van Lookeren Campagne MM (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10:200–208CrossRefGoogle Scholar
  7. Bügl H, Fauman EB, Staker BL, Zheng F, Sidney RK, Saper MA, Bardwell JCA, Jacob U (2000) RNA methylation under heat shock control. Mol Cell 6:349–360PubMedGoogle Scholar
  8. Calderini O, Börge L, Vicente O, Binarova P, Heberle-Bors E, Wilson C (1998) A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci 111:3091–3100PubMedGoogle Scholar
  9. Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of α-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571PubMedCrossRefGoogle Scholar
  10. Chu B, Snustad DP, Carter JV (1993) Alteration of β-tubulin gene expression during low-temperature exposure in leaves of Arabidopsis thaliana. Plant Physiol 103:371–377PubMedGoogle Scholar
  11. Cho MS, Zapata FJ (1988) Callus formation and plant regeneration in isolated pollen culture of rice (Oryza sativa L., cv. Taipei 309). Plant Sci 58:239–244CrossRefGoogle Scholar
  12. Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrate in the induction of flowering in Arabidopsis thaliana: comparison between wild type and starch-less mutant. Planta 206:131–137PubMedCrossRefGoogle Scholar
  13. Custers JBM, Gordewener JHG, Nöllen Y, Dons JJM, van Lookeren-Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore culture of Brassica napus. Plant Cell Rep 13:267–271CrossRefGoogle Scholar
  14. Dubois T, Guedrira M, Dubois J, Vasseur J (1991) Direct somatic embryogenesis in leaves of Chicorium: a histological and SEM study of early stages. Protoplasma 162:120–127Google Scholar
  15. Duncan EJ, Heberle E (1976) Effect of temperature shock on nuclear phenomena in microspores of Nicotiana tabacum and consequently on plantlet production. Protoplasma 90:173–177CrossRefGoogle Scholar
  16. Dunwell JM (1996) Microspore cultures. In: Mohan Jain S, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 1. Kluwer, Dordrecht, pp 205–216Google Scholar
  17. Gagliardi D, Breton C, Chaboud A, Vergne P, Dumas C (1995) Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol Biol 29:841–856PubMedCrossRefGoogle Scholar
  18. Gaillard A, Vergne P, Beckert M (1991) Optimization of maize isolation and conditions for reliable plant regeneration. Plant Cell Rep 10:55–58CrossRefGoogle Scholar
  19. Garrido D, Charvat B, Benito Moreno RM, Alwen A, Vicente O, Heberle-Bors E (1991) Pollen culture for haploid plant production in tobacco. In: Negrutiu I, Gharti-Chhetri G (eds) A laboratory guide for cellular and molecular plant biology. Birkhäuser, Basel, pp 59–69Google Scholar
  20. Garrido D, Eller N, Heberle-Bors E, Vicente O (1993) De novo transcription of specific messenger RNAs during the induction of tobacco pollen embryogenesis. Sex Plant Reprod 6:40–45CrossRefGoogle Scholar
  21. Garrido D, Vicente O, Heberle-Bors E, Rodriquez-Garcia MI (1995) Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum. Protoplasma 186:220–230CrossRefGoogle Scholar
  22. Germana MA, Chiancone B (2003) Improvement in Citrus clementina ort. Ex Tan. microspore derived embryoids induction and regeneration. Plant Cell Rep 22:181–187PubMedGoogle Scholar
  23. Groover A, DeWitt N, Heidel A, Jones A (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196:197–211CrossRefGoogle Scholar
  24. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497Google Scholar
  25. Gustafson V, Baenziger PS, Wright MS, Stroup WW, Yen Y (1995) Isolated wheat microspore culture. Plant Cell Tissue Organ Cult 42:207–213CrossRefGoogle Scholar
  26. Györgyey J, Gartner A, Nemeth K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol 16:999–1007PubMedGoogle Scholar
  27. Heberle-Bors E (1983) Induction of embryogenic pollen grains in situ and subsequent in vitro pollen embryogenesis in Nicotiana tabacum L. by treatments of pollen donor plants with feminizing agents. Physiol Plant 59:67–72Google Scholar
  28. Heberle-Bors E (1989) Isolated pollen in tobacco: plant reproductive development in a nutshell. Sex Plant Rep 2:1–10Google Scholar
  29. Hoekstra S, van Zijderveld MH, Heidekamp F, van der Mark F (1992) Anther and microspore culture of Hordeum vulgare L. cv. Igri. Plant Sci 86:89–96CrossRefGoogle Scholar
  30. Hu T, Kasha KJ (1999) A cytological study of pretreatments used to improve isolated microspore cultures of wheat (Triticum aestivum L.) cv. Chris. Genome 42:432–441CrossRefGoogle Scholar
  31. Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114PubMedCrossRefGoogle Scholar
  32. Indrianto A, Heberle-Bors E, Touraev A (1999) Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci 143:71–79CrossRefGoogle Scholar
  33. Indrianto A, Barinova J, Touraev A, Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta 212:163–174PubMedCrossRefGoogle Scholar
  34. Jäättelä M, Wisseng D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp 70 exerts its antiapoptotic function downstream of caspase3-like proteases. EMBO J 17:6124–6134PubMedGoogle Scholar
  35. John PC, Sek FJ, Carmichael JP, McCurdy DW (1990) p34cdc2 homologue level, cell division, phytohormone responsiveness and cell differentiation in wheat leaves. J Cell Sci. 97:627–630PubMedGoogle Scholar
  36. Kamada H, Ishikawa K, Saga H, Haada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Culture Lett 10:38–44Google Scholar
  37. Karpilova I, Chugunova N, Bil’ K, Chermnykh L (1980) Ontogenetic changes of chloroplast ultrastructure, photosynthates and photosynthate outflow from the leaves in cucumber plants under conditions of reduced night temperature. Soviet Plant Physiol 29:113–120Google Scholar
  38. Katsuta J, Shibaoka H (1992) Inhibition by kinase inhibitors of the development and the disappearance of the preprophase band of microtubules in tobacco BY-2 cells. J Cell Sci 103:397–405Google Scholar
  39. Kijne JW (1992) The Rhisobium infection process. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 349–398Google Scholar
  40. Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350CrossRefGoogle Scholar
  41. Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432CrossRefGoogle Scholar
  42. Kyo M, Harada H (1990a) Phosphorylation of proteins associated with embryogenic dedifferentiation of immature pollen grains of Nicotiana rustica. J Plant Physiol 136:716–722Google Scholar
  43. Kyo M, Harada H (1990b) Specific phosphoproteins in the initial period of tobacco pollen embryogenesis. Planta 182:58–63CrossRefGoogle Scholar
  44. Kyo M, Ohkawa T (1991) Investigation of subcellular localization of several phosphor-proteins in embryogenic pollen grains in tobacco. J Plant Physiol 137:525–529Google Scholar
  45. Löw D, Brändle L, Nover C, Forreiter C (2000) Cytosolic heat-stress proteins Hsp 17.7 class I and Hsp 17.3 class II of tomato act as molecular chaperones in vivo. Planta 211:575–582PubMedGoogle Scholar
  46. Mager WH, Hohmann S (1997) Stress response mechanisms in the yeast Saccharomyces cerevisiae. In: Hohmann S, Mager WH (eds) Yeast stress responses. Landes, New York, pp 75–99Google Scholar
  47. Marciniak K, Kaczmarek Z, Adamski T, Surma M (2003) The anther-culture response of triticale line × tester progenies. Cell Mol Biol Lett 8:343–351PubMedGoogle Scholar
  48. Msadek T (1999) When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol 7:201–207PubMedCrossRefGoogle Scholar
  49. Nitsch C, Norreel B (1974) La culture de pollen isolé surmilieu synthétique. CR Acad Sci (Paris) Ser D 278:1031–1034Google Scholar
  50. O’Brien IEW, Baguley BC, Murray BG, Morris BAM, Ferguson IB (1998) Early stages of the apoptotic pathway in plant cells are reversible. Plant J 13:803–814Google Scholar
  51. Ogura T, Tomoyasu T, Yuki T, Morimura S, Begg KJ, Donachie WD, Mori H, Niki H, Higara S (1991) Structure and function of the ftsH gene in Escherichia coli. Res Microbiol 142:279–282PubMedCrossRefGoogle Scholar
  52. Pandey P, Saleh A, Nakazawa A, Shalendra K, Srinavasa MS, Vijay K, Weicheselbaum R, Nalin C, Alnemri ES, Kufe D, Kharbanda S (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of preocaspase-9 by heat shock protein 90. EMBO J 19:4310–4322PubMedCrossRefGoogle Scholar
  53. Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C (2003) Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathway. Biochem Biophys Res Commun 304:505–512PubMedCrossRefGoogle Scholar
  54. Pearce AK, Humphrey TC (2001) Integrating stress-response and cell-cycle checkpoint pathways. Trends Plant Sci 11:426–433Google Scholar
  55. Pechan PM, Keller WA (1989) Induction of microspore embryogenesis in Brassica napus L. by gamma irradiation and ethanol stress. In Vitro Cell Dev Biol 25:1073–1074Google Scholar
  56. Piper PW (1993) Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11:1–11CrossRefGoogle Scholar
  57. Ponya Z, Timar I, Szabo L, Kristof Z, Barnabas B (1999) Morphological characterization of wheat (T. aestivum L.) egg cell protoplasts isolated from immature and over-aged caryopsis. Sex Plant Rep 11:357–359Google Scholar
  58. Prestamo G, Testillano PS, Vicente O, Gonzalez-Melendi P, Coronado MJ, Wilson C, Heberle-Bors E, Risueno MC (1999) Ultrastructural distribution of MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains. J Cell Sci 112:1065–1076PubMedGoogle Scholar
  59. Raina SK, Irfan ST (1998) High frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Rep 17:957–962CrossRefGoogle Scholar
  60. Rashid A, Siddiqui AW, Reinert J (1981) Ultrastructure of embryogenic pollen of Nicotiana tabacum var. Badischer Burley. Protoplasma 107:375–385CrossRefGoogle Scholar
  61. Roldan M, Gomez-Mena C, Ruiz-Garcia L, Salinas J, Martinez-Zapater JM (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J 20:581–590PubMedCrossRefGoogle Scholar
  62. Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperature: possible role in protecting against chilling injuries. Plant Physiol 117:651–658PubMedCrossRefGoogle Scholar
  63. Sangwan RS, Camefort H (1984) Cold-treatment related structural modifications in the embryogenic anthers of Datura. Cytologia 49:473–487Google Scholar
  64. Scott P, Lyne RL, ap Rees T (1995) Metabolism of maltose and sucrose by microspores isolated from barley (Hordeum vulgare L.) Planta 197:435–441CrossRefGoogle Scholar
  65. Segui-Simarro JM, Testillano PS, Risueno MC (2003) Hsp70 and Hsp90 change their expression and sub-cellular localization after microspore embryogenesis induction in Brassica napus L. J Struct Biol 142:379–391PubMedGoogle Scholar
  66. Shim YS, Kasha KJ (2003) The influence of pretreatment on cell stage progression and the time of DNA synthesis in barley (Hordeum vulgare L.) uninucleate microspores. Plant Cell Rep 21:1065–1071PubMedCrossRefGoogle Scholar
  67. Shinozaki K, Russel P (1996) Conjugation, meiosis and osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10:2276–2288Google Scholar
  68. Simmonds DH (1994) Mechanism of induction of microspore embryogenesis in Brassica napus: significance of preprophase band of microtubules in the first sporophytic divisions. In: Akkas N (ed) Biomechanics of active movement and division of cells. Springer, Berlin Heidelberg New York, pp 569–574Google Scholar
  69. Stauffer C, Benito Moreno RM, Ylstra B, Vicente O, Heberle-Bors E (1992) Seed set after pollination with in-vitro-maturated, isolated pollen of Triticum aestivum. Theor Appl Genet 81:576–580Google Scholar
  70. Sternlicht H, Ringel I, Szasz J (1983) Theory for modelling the copolymerization of tubulin and tubulin-colchicine complex. Biophys J 42:255–267PubMedCrossRefGoogle Scholar
  71. Sun W, Bernard C, van de Cotte B, Van Montagy M, Verbruggen N (2001) At-HSP17.6A encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415PubMedCrossRefGoogle Scholar
  72. Sunderland N, Evans LJ (1980) Multicellular pollen formation in cultured barley anthers. II. The A, B and C pathways. J Exp Bot 31(121):501–540Google Scholar
  73. Sunderland N, Roberts M (1979) Cold-pretreatment of excised flower buds in float culture of tobacco anthers. Ann Bot 43:405–414Google Scholar
  74. Sunderland N, Xu ZH (1982) Shed pollen culture in Hordeum vulgare. J Exp Bot 136:1086–1095Google Scholar
  75. Telmer CA, Newcomb W, Simmonds DH (1993) Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma 172:154–165CrossRefGoogle Scholar
  76. Testillano PS, Coronado MJ, Segui JM, Domenech J, Gonzalez-Melendi P, Raska I, Risueno MC (2000) Defined nuclear changes accompany the reprogramming of microspore to embryogenesis. J Struct Biol 129:223–232PubMedCrossRefGoogle Scholar
  77. Touraev A, Ilham A, Vicente O, Heberle-Bors (1996a) Stress induced microspore embryogenesis from tobacco microspores: an optimized system for molecular studies. Plant Cell Rep 15:561–565Google Scholar
  78. Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum. L) induced by starvation at high temperatures. Sex Plant Rep 9:209–215Google Scholar
  79. Touraev A, Pfosser M, Vicente O, Heberle-Bors E (1996c) Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of pollen embryogenesis. Planta 2000:144–152Google Scholar
  80. Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:285–303CrossRefGoogle Scholar
  81. Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:54–109Google Scholar
  82. Twell D (2002) The developmental biology of pollen. In: O’Neill SD, Roberts JA (eds) Plant reproduction. Academic Press, Sheffield, pp 86–153Google Scholar
  83. Wang M, Hoekstra S, van Bergen S, Lamers GEM, Oppedijk BJ, van der Heijden MW, de Preister W, Schilperoort RA (1999) Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol 39:489–501PubMedCrossRefGoogle Scholar
  84. Wehrmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins in part of the developmental program of late seed maturation. Plant Physiol 112:747–757Google Scholar
  85. Wei ZM (1982) Pollen callus culture in Triticum aestivum. Theor Appl Genet 63:71–73CrossRefGoogle Scholar
  86. Weingartner M, Binarova P, Drykova D, Schweighofer A, David JP, Heberle-Bors E, Doonan J, Börge L (2001) Dynamic recruitment of cdc2 to specific microtubule structures during mitosis. Plant Cell 13:1929–1943PubMedCrossRefGoogle Scholar
  87. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  88. Wilson C, Anglmayer R, Vicente O, Heberle-Bors E (1995) Molecular cloning, functional expression in Escherichia coli, and characterization of multiple mitogen-activated-protein kinases from tobacco. Eur J Biochem 233:249–257PubMedCrossRefGoogle Scholar
  89. Wu J, Lightner J, Warwick N, Browse J (1997) Low-temperature damage and subsequent recovery of fab 1 mutant Arabidopsis exposed to 2°C. Plant Physiol 113:347–356PubMedCrossRefGoogle Scholar
  90. Xu ZH, Huang B, Sunderland N (1981) Culture of barley anthers in conditioning media. J Exp Bot 32:767–778Google Scholar
  91. Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693PubMedCrossRefGoogle Scholar
  92. Zaki MAM, Dickinson HG (1991) Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Rep 4:48–55Google Scholar
  93. Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schöffl F, Heberle-Bors E (1995) The expression small heat shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ 18:139–147Google Scholar
  94. Zhao JP, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicines instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198:433–439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Svetlana Zoriniants
    • 1
  • Alisher S. Tashpulatov
    • 1
  • Erwin Heberle-Bors
    • 1
  • Alisher Touraev
    • 1
  1. 1.Institute of Microbiology and GeneticsMax F. Perutz Laboratories, University Departments at the Vienna BiocenterViennaAustria

Personalised recommendations