Skip to main content
  • 1163 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bochobza-Degani O et al. (2000) Design and noise consideration of an accelerometer employing modulated integrative optical sensing. Sensors and Actuators A 84: 53–64

    Article  Google Scholar 

  2. Breng U et al. (1999) μCORS — a bulk micromechined gyroscope based on coupled resonators. Transducers ‘99: Proc of the 10th Int Conf on Solid-State Sensors and Actuators, Japan: 1570–1573

    Google Scholar 

  3. Bütefisch S et al. (2001) Micromechanical three-axial tactile force sensor for micromechanical characterisation. Microsystem Technologies 7: 171–174

    Article  Google Scholar 

  4. Chin A et al. (1996) A novel processing technique for thin diaphragms. Micro System Technologies ‘96: Proc of the 5th Int Conf and Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 223–228

    Google Scholar 

  5. Collins SD, Gonzalez C, Smith RL (1997) Microfabrication creates mesoscopic optical systems. Laser Focus World: 187–191

    Google Scholar 

  6. Corman T, Enoksson P, Stemme G (1998) Low-pressure-encapsulated resonant structures with integrated electrodes for electrostatic excitation and capacitive detection. Sensors and Actuators A 66: 160–166

    Article  Google Scholar 

  7. Dauderstädt UA, Sarro PM, French PJ (1998) Temperature dependence and drift of a thermal accelerometer. Sensors and Actuators A 66: 244–49

    Article  Google Scholar 

  8. De Bhailís D et al. (2000) Modelling and analysis of a magnetic microactuator. Sensors and Actuators 81: 285–289

    Article  Google Scholar 

  9. DiLella D et al. (2000) A micromachined magnetic-field sensor based on an elctron tunneling displacement transducer. Sensors and Actuators 86: 8–20

    Article  Google Scholar 

  10. Esashi M (1994) Encaspsulated micromechanical sensors. Microsystem Technologies 1: 2–9

    Article  Google Scholar 

  11. Frühauf J et al. (1997) Konstruktionselemente der Silizium-Mikrosystemtechnik, Varianten ihrer ätztechnischen Herstellung und ihr rechnergestützter Entwurf. Final Report AIF—Project 9929B, Technische Universität Chemnitz

    Google Scholar 

  12. Frühauf J, Hannemann B (2000) Wet etching of undercut sidewalls in {001}-silicon. Sensors and Actuators 79: 55–63

    Article  Google Scholar 

  13. Gärtner E, Frühauf J, Jänsch E (2001) Mounting of Si-chips with plastically bent cantilevers. Transducers ‘01: Proc of the 11th Int Conf on Solid-State Sensors and Actuators, Germany: 206–209

    Google Scholar 

  14. Gärtner E et al. (2003) Flexural solid hinges etched from silicon. Proc of the euspen Int Topical Conf, 1, Germany: 43–46

    Google Scholar 

  15. Gärtner E et al. (2003) Festkörpergelenkführungen aus Si mit bis zu ± 5 mm Hub. Proc of the 6{thth} Conf of Mikromechanik & Elektronik, Mikrosystemtechnik ‘03, Germany: 118–121

    Google Scholar 

  16. Geßner T et al. (1992) Mikromechanische Technologieentwicklung für kine-tische ensoren. Gerätetechnik und Mikrosystemtechnik, VDI-Berichte 960, VDI-Verlag, Düsseldorf: 423–440

    Google Scholar 

  17. Geßner T, Vetter E, Wiemer M (1994) Technology tools for a high precision accelerometer in bulk micromechanics. Microsystem Technologies 1: 10–13

    Article  Google Scholar 

  18. Gonzalez A, Collins SD (1997) Magnetically actuated fibre-optic switch with micromachined positioning stages. Optics Letters 22,10: 709–711

    Google Scholar 

  19. Gonzalez C et al. (1997) Microjoinery for optomechanical systems. Miniaturized Systems with Micro-Optics and Micromechanics II. Proc of SPIE, 3008, USA: 171–178

    Google Scholar 

  20. González C et al. (1998) Micro Joinery: concept, definition and application to microsystem development. Sensors and Actuators A 66: 315–332

    Article  Google Scholar 

  21. Götz A, Campabadal F, Cané C (1998) Improvement of pressure-sensor performance and process robustness through reinforcement of the membrane edges. Sensors and Actuators A 67: 138–141

    Article  Google Scholar 

  22. Hannemann B, Frühauf J (1998) New and extended possibilities of orientation dependent etching in microtechniques. IEEE, MEMS ‘98: Proc of the 11th Annual International Workshop on Micro Electro Mechanical Systems, Germany: 234–239

    Google Scholar 

  23. Hanf M et al. (2002) Realization of electrostatically driven actuators using curved electrodes fabricated by using silicon bulk micromachining techniques. Actuator 2002: Proc of the Int Conf on new Actuators, Germany: 329–332

    Google Scholar 

  24. Hashimoto M et al. (1994) Silicon angular rate sensor using electromagnetic excitation and capacitive detection. Micro System Technologies ‘94: Proc of the 4th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 763–771

    Google Scholar 

  25. Hermes T et al. (1996) A micro mechanical system for liquid dosage and nebulization. Micro System Technologies ‘96: Proc of the 5th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 187–192

    Google Scholar 

  26. Hiller K (1998) A new bulk micromachined gyroscope with vibration enhancement by coupled resonators. Micro System Technologies ‘98: Proc of the 6th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 115–120

    Google Scholar 

  27. Horie M, Funabashi H, Ikegami K (1995) A study on micro force sensors for micro handling systems. Microsystem Technologies 1: 105–110

    Article  Google Scholar 

  28. Iosub R, Moldovan C, Modreanu M (2002) Silicon membranes fabrication by wet anisotropic etching. Sensors and Actuators A 99: 104–111

    Article  Google Scholar 

  29. Kabir AE et al. (1999) High sensitivity acoustic transducers with thin p+ membranes and gold back-plate. Sensors and Actuators 78: 138–142

    Article  Google Scholar 

  30. Krause W (1993) Konstruktionselemente der Feinmechanik. Carl Hanser Verlag, München Wien

    Google Scholar 

  31. Kurth S et al. (2001) A new vacuumfriction gauge based on a Si tuning fork. Transducer ‘01: Proc of the 11th Int Conf on Solid-State Sensors and Actuators, Germany: 502–505

    Google Scholar 

  32. Kwon K, Park S (1998) A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer. Sensors and Actuators A 66: 250–255

    Article  Google Scholar 

  33. Lapadatu D et al. (1998) A model for the etch-stop location on reverse-biased pn junctions. Sensors and Actuators A 66: 259–267

    Article  Google Scholar 

  34. Manea E, Müller R, Popescu A (1999) Some particular aspects of the thin membrane by boron diffusion processes. Sensors and Actuators A 74: 91–94

    Article  Google Scholar 

  35. Markert J et al. (1992) Elektrostatischer Mikroaktor. Gerätetechnik und Mikrosystemtechnik, VDI-Berichte 960, VDI-Verlag, Düsseldorf

    Google Scholar 

  36. Matsunaga T, Minami K, Esashi M (1999) Acceleration switch with extended holding time using the squeeze film effect. Transducers ‘99: Proc of the 10th Int Conf on Solid-State Sensors and Actuators, Japan: 1550–1553

    Google Scholar 

  37. Mineta T et al. (1999) Piezoresistive micro accelerometer for high g shock using air damping effect. Transducers ‘99: Proc of the 10th Int Conf on Solid-State Sensors and Actuators: 1530–1533

    Google Scholar 

  38. Nguyen NT et al. (1998) Hybrid-assembled micro dosing system using silicon-based micropump/valve and mass flow sensor. Sensors and Actuators A 69: 85–91

    Article  Google Scholar 

  39. Offereins HL, Sandmaier H (1990) Stressfreie Chipmontage. Mikroelektronik, Heft 1, VDE-Verlag

    Google Scholar 

  40. Oosterbroek RE et al. (1999) A micromachined pressure/flow sensor. Sensors and Actuators 77: 167–177

    Article  Google Scholar 

  41. Oosterbroek RE et al. (1999) Characterization and optimization of monocrystalline in-plane operating check valves. Transducers ‘99: Proc of the 10th Int Conf on Solid-State Sensors and Actuators, Japan: 1816–1819

    Google Scholar 

  42. Puers R, Reyntjens S (2001) Fabrication and testing of custom vacuum encapsulations deposited by focused ion beam direct-write CVD. Sensors and Actuators A 92: 249–256

    Article  Google Scholar 

  43. Roßberg R, Schmidt B, Büttgenbach S (1995) Micro liquid dosing system. Microsystem Technologies 2/1: 11–16

    Google Scholar 

  44. Schäfer A (1992) Kapazitiver mikromechanischer Beschleunigungssensor auf Basis eines schneidengelagerten Drehpendels. Dissertation Thesis, Technische Universität Chemnitz

    Google Scholar 

  45. Schlaak H et al. (1996) Silicon-microrelay with electrostatic moving wedge actuator — new functions and miniaturisation by micromechanics. Micro System Technologies ‘96: Proc of the 5th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 463–468

    Google Scholar 

  46. Schmiedel R (2002) Technologieentwicklung für einen neuartigen kapazitiven Beschleunigungssensor. Diploma Thesis, Technische Universität Chemnitz

    Google Scholar 

  47. Schröpfer G, de Labachelerie M, Ansel Y (1998) Investigations concerning the mechanical and capacitive sensitivity of lateral bulk accelerometers. MME ‘98: Proc of the 9th Micromechanics Europe Workshop, Norway: 295–298

    Google Scholar 

  48. Schröpfer G et al. (1998) Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation. Sensors and Actuators A 68: 344–349

    Article  Google Scholar 

  49. Shikida M et al. (2003) Active tactils sensor for detecting contact force and hardness of an object. Sensors and Actuators A 103: 213–218

    Article  Google Scholar 

  50. Szita R et al. (2001) A micropipettor with integrated sensors. Sensors and Actuators A 89: 112–118

    Article  Google Scholar 

  51. Vujanic A et al. (1996) Small torque measurements using micromachined sislicon cross-spring structure. Micro System Technologies ‘96: Proc of the 5th Int Conf & Exhibition on Micro Electro, Opto, Mechanical Systems and Components, Germany: 261–266

    Google Scholar 

  52. Weidner J (1997) Untersuchungen zur Übertragbarkeit von Gestaltungsprinzipien der Feinwerktechnik auf Funktionselemente der Mikromechanik. Diploma Thesis, Technische Universität Chemnitz

    Google Scholar 

  53. Wibbeler J, Pfeifer G, Hietschold M (1998) Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensors and Actuators A 71: 74–80

    Article  Google Scholar 

  54. Xinxin L, Minhang B (2001) Micromachining of multi-thickness sensor-array structures with dual eching technology. J Micromech Microeng 11: 239–244

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Elements for Mechanical Applications. In: Shape and Functional Elements of the Bulk Silicon Microtechnique. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26876-6_6

Download citation

Publish with us

Policies and ethics