Finite algebraic specifications of semicomputable data types

  • G. Marongiu
  • S. Tulipani
Session CAAP 3 Algebraic Specifications I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 249)


Data Type Recursive Function Combinatory Logic Constant Symbol Abstract Data Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [ADJ 75]
    J.A. GOGUEN, J.W. THATCHER, E.G. WAGNER and J.B. WRIGHT, Abstract data types as initial algebras and correctness of data representations, in Proceedings ACM Conference on Computer Graphics, Pattern Recognition and Data Structure, NY 1975, 89–93.Google Scholar
  2. [ADJ 78]
    J.A. GOGUEN, J.W. THATCHER and E.G. WAGNER, An initial algebra approach to the specification, correctness and implementation of abstract data types, Current trends in Programming Methodology, Vol. 4: Data Structuring (R.T. Yeh, ed.), Prentice-Hall (1978), 80–149.Google Scholar
  3. [ADJ 82]
    J.W. THATCHER, E.G. WAGNER and J.B. WRIGHT, Data type specification: parametrization and the power of specification technique, TOPLAS 4(4), 1982, 711–732.CrossRefGoogle Scholar
  4. [Ba 81]
    H.P. BARENDREGT, The lambda calculus, its syntax and semantics, North-Holland, Amsterdam 1981.Google Scholar
  5. [B-T 80]
    J.A. BERGSTRA and J.V. TUCKER, On bounds for the specification of finite data types by means of equations and conditional equations, preprint IW 131/80 Amsterdam 1980.Google Scholar
  6. [B-T 83]
    J.A. BERGSTRA and J.V. TUCKER, Initial and final algebra semantics for data type specifications: two characterization theorems", SIAM J. of Computing 12 (1983), 366–387.CrossRefGoogle Scholar
  7. [B-T 86]
    J.A. BERGSTRA and J.V. TUCKER, Algebraic specifications of Computable and Semicomputable Data Types, Department Computer Science Research Report CS-R8619, Amsterdam (May 1986).Google Scholar
  8. [E-M 85]
    H. EHRIG and B. MAHR, Fundamentals of Algebraic Specification 1, Monograph EATCS, Springer-Verlag 1985.Google Scholar
  9. [Gr 78]
    G. GRATZER, Universal Algebra, 2nd ed. Springer-Verlag, 1979.Google Scholar
  10. [H-S 80]
    J.R. HINDLEY and J.P. SELDIN (Eds.), To. H.B. Curry: Essays on combinatory logic, lambda-calculus and formalism, Academic Press, NY 1980.Google Scholar
  11. [L-Z 74]
    B.H. LISKOV and S.M. ZILLES, Programming with Abstract Data Types, Proc. ACM Symp. on very high level languages, SIGPLAN Notices 9, (1974), 50–59.Google Scholar
  12. [L-Z 75]
    B. LISKOV and S. ZILLES, Specification techniques for data abstractions, IEEE Transactions on Software Engineering 1 (1975), 7–19.Google Scholar
  13. [Ma 71]
    A.I. MAL'CEV, Constructive algebras I, The Metamathemathics of Algebraic Systems, Collected papers: 1936–1967, North-Holland.Google Scholar
  14. [M-T 86]
    G. MARONGIU and S. TULIPANI, Remarks on complexity in specifying computable types, in preparation.Google Scholar
  15. [Mz 79]
    J. MALITZ, Introduction to Mathematical Logic, Springer-Verlag, 1979.Google Scholar
  16. [Ra 60]
    M.O. RABIN, Colputable algebra, general theory and the theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341–360.Google Scholar
  17. [Wa 79]
    M. WAND, Final algebra semantics and data type extensions, J. Computer and Ststems Sciences 19 (1979), 27–44.CrossRefGoogle Scholar
  18. [Zi 79]
    S. ZILLES, An introduction to data algebras Lect. Notes in Comp. Sci. 86, (1979), 248–270.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. Marongiu
    • 1
  • S. Tulipani
    • 2
  1. 1.Dpt. of MathematicsUniversity of BolognaItaly
  2. 2.Dpt. of Mathematics and PhysicsUniversity of CamerinoItaly

Personalised recommendations