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0-Introduction

For many years computer scientists have looked at data objects in terms of axioms
which govern the behaviour of data structures. Such an attempt is called Abstrackt
Data Type Specification. Abstraction is involved in the fact that only properties
which are independent of data representation are considered.

In the algebraic approach, initiated in the paper of LISKOV-ZiLLES [1974], data
structures are thought of as algebras in the sense of general algebra (see also{ Zi
79] and specifications are given in terms of equations or conditional equations. But,
only particular models of the specifying axioms play a special role. Data structures
are usually finite, sometimes potentially infinite. Therefore, the significant models of
a data type spedfication E in a signature I are given by the class Algm(E,E) whose
members are the models of E which are finitely generated by elements named as const
ants in I. The initial and final objects in Algm( I,E), which are given up to isomor-
phism, determine the initial and final algebra semantics, respectively. More precisely,
assuming that two closed terms t,s of signature I are given, then, the equation
t=s is true when the terms t,s are evaluated in the initial algebra if and only if the
formal equation t=s can be proved from E. Moreover, the equation t=s is consistent
with E if and only if it is true in the final algebra. Both initial and final algebra
semantical approaches have been widely discussed (see [ADJ 75,78,82], [Wa 79], the
book [E-M 85].

BERGSTRA and TUCKER ({1983 ] discussed the problem of characterizing semicomp
utable (cosemicomputable, computable) data types by means of finite conditional sp-

ecification with hidden functions and no additional sorts plus initial algebra semantics

(*) Research performed under the auspices of the Italian CNR and MPI. This is a
revised version of previcus (unpublished) paper which circulated under the title:
Finite Specification of Data Types with extra Operations.
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{plus final algebra semantics), plus both semantics, respectively. However, the
problem is solved only for cosemicomputable and computable data types.

We have tried to solve the problem for semicomputable data types giving a char-
acterization which is weaker than that conjectured in the paper [B-T 83]. More prec
isely, let us assume A is an infinite semicomputable algebra of signature y and finit-
ely generated by constants named in its signature. Then, we can determine a finite
conditional equation specification ( 'E) where 3' is a finite signature extending g

with no additional sorts so that: given two closed terms i,s of signature 3z, then
(1) t=s is true in A if and only if t=s is provable from E.

Moreover, our method provides an expansion A’ to signature ' of the structure A
such that A' is a model of E. However, A' in-our theorem is not the initial algebra of
Algm (£',E), as BERGSTRA and TUCKER conjectured in the semicomputable case. In

fact we cannot prove for closed terms, t', s' of signature I':
(2) t'=s' is true in 4 if and only if t'=s' is provable from E.

This means that the specification (¢',E) is a consistent extension but not an enrichm
ent of a specification for A (see [E-M 85, Chap. 6 ]). Furthermore our results also
extend naturally to cosemicomputable and to computable data types (see Theorems
Band C).

The agility of proof via Combinatory Logic does not consent comparison of the
complexity of the set of conditional equations E to the complexity of the recursive
functions which define A. This problem will be explored in future work [M-T 86]
where it has also been proved that one single equation is sufficient for specifying a
computable algebra as a hidden enrichment under both initial and final algebra sem-
antics (according to BERGSTRA and TUCKER Definition, see [B-T 83 and [B-T 80]

To simplify notation, we treat the case of signature : in a single sort. However,
the results can be easily extended to many-sorted algebras. It is assumed that the
reader is familiar with the papers of Bergstra and Tucker [B-T 83], (B-T 86] and
with the main papers on specification theory; in particular [E-M 85]. Moreover, the
basic notations of universal algebra and recursion theory are assumed (see [Gr 78],
Mz 79]). In particular, it is assumed an understanding of the notions of semicomp-
utable, cosemicomputable and computable algebra which can be found treated in full

in MAL'CEV [1961] (see also [Ra 603).
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1-Preliminaries and Notations.

Let ¢ be a finite algebraic signature having at least one constant symbol, We shall
denote I by { fl’ vy fk’ oo cr} where fl,. .. ’fk are function symbols and Cl’
., ¢ constant symbols. If A is an algebra of carrier A and signature I we denote
r A A
the interpretations of the symbols of & in the algebra A by ff‘ PR ,ff: , Cl TERFLNE
As pointed out in the introduction, we shall consider only algebras of finite signat-
ure and in addition they are infinite and generated by elements named as constants
in their signature. Hence, if an aigebra is of signature I it is generated by the el-
A A
ements c1 gons ,cP .
For such algebras the definitions of semicomputable, cosemicomputable and comp-
utable can be given more simply than in the general case along the following lines

(see [Ma 61], [ B-T 86]).

Definition 1.1 An algebra N is a recursive number algebra if and only if the car
rier of N is the set N of natural numbers and the operations of N are recursive

functions.

Definition 1.2 Let A be an algebra and N be a recursive number algebra of the
same signature and 7: N > A be a morphism. Then, 7 is

(i) a recursively enumerable {r.e) morphism,

(ii) a corecursively enumerable (co-r.e.) morphism,

(iil)  a recursive morphism,
if and only if ker 7 = p is

(i) a recursively enumerable relation,

(ii) a relation whose complement in N2 is recursively enumerable,

(iii) a recursive relation,

respectively.

Definition 1.3 Let A be an algebra. Then, A is

(i) semicomputable,

(ii) cosemicomputable,

(iii) computable,
if and only if there exists a recursive number algebra N (of the same signature) and
a surjective w:§N > A such that 7 is

1) a r.e epimorphism,

(ii) a co-r.e. epimorphism,

(iii)  a recursive epimorphism, respectively.
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For the following discussion we need some facts about combinatory algebras and
combinatory logic that we recall in order to fix terminology and notation (for a compr
chensive treatment see [Ba 811, [H-S 80] ). Let cl = {¢,K,S! be a signature such that
= is a symbol of binary operation and K,S are constant symbols. A combinatory alge-
bra is a structure M= (M, » ,KM,SM) of signature cl which satisfies the axioms:

El. Kexsy = x

E2. SexoyszZ = XeZo {ye2) ,

where the association for the operation symbol ¢ is done as usual from the left so that

Mle MZ" e ® Mk means (...((Ml- M2 )~M3)0 e ) M‘k . A combinator is a term in
T(cl), i.e. a term of signature cl with no variables. Some combinators are called

numerals. More specifically, if n is a netural number we denote by ™' a- combinator

which is called the numeral representing n and is defined inductively as follows:
07 = Kel "n+l' = SeBe'n’ (1.4)

where as usual I is the combinator SsKe¢K and B is the combinator Ss(KeS)eK. We
denote the equational theory, whose non logical axioms are El and E2 and which is
named Combinatory Logic, by CL.

What we need is the following (see [Ba 81J)

Fact 1.5. For every recursive function f there exists a combinator Ff which repres

e s CL p— FfO‘“n"‘ ° ..‘.c"n;‘n =

ents f in CL, viz. for all natural numbers n 1

1
Iy T
f(nl,‘. .,nm) .

2-Semicomputable Data Types. Main result.

Theorem A. Let A be a semicomputable algebra of signature £ .Then, there exists
a finite set E of conditional equations in a signature I' exineding I such that for

all tl,t2 € T(1): E t1=‘c2 if and only if A = =

t2 .

In order to prove Theorem A we must carry out some constructions and prove two
Lemmas.

Let Abe a semicomputable infinite algebra of signature =2 :{fl, . ’fk’cl’ e ,cl} ,
N be a recursive number algebra of signature L and v :N »A be a r.e. epimorphism.

Let us suppose that m_,... sm are natural numbers such that

1’
_ A _ A
ﬁ(ml) = c1 seens w(mr) = cr {2.1)

and m,=m, iff cfA = ch for i,j=1,...,r.
i} 1 ]

Let p be ker n and g be a recursive function of three variables such that for
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m,n € N, (m,n) ¢ p iff there is a natural number p such that g(m,n,p) = 0. When
f is a function symbol which is not constant of signature Z, the combinator which repr
esents in CL the function fN which interpretes the symbol f in the recursive num

ber algebra N is denoted by F.. Finally, the combinator which represents the rec

¢
ursive function g which enumerates ker+is denoted by G.
Let now ' be the signature
{fl, e ’fk’cl’ et * . K,S, Nat, Hom}
i.e., is I U cl plus two unary operation symbols Nat,Hom. Consider the following
list of conditional equations in I', where x,y,xl,xz,. .. denote variables. To simplify

notation we mention only one of the function symbols f 1o ’fk’ say it f of m arguments
E1-E2 axioms of CL.

E3 is the conjunction for all f in I of

(1 $i im Nat(xi)=K) > Hom(Ffo xl- ...-xm) = f(Hom(xl),.. . ,Hom(xm))
/\ Y =
E4 15§ ir Hom( mj ) c].

ES Nat("0') = K A (Nat(x) = K— Nat({SeB)ex) =K)
E6 (Nat(x) = K A Nat(y) = K A Nat(z) = K A GeXeyez = G*)— Hom(x)=Hom(y).

The set of axioms E1-E6 is denoted by E. The idea we have exploided for writing
down the set of axioms E can be roughly described as follows. The algebra A may be
expanded to a structure A' which also becomes a combinatory algebra. Therefore, the
structure Ncan be codified in the expansionA' of A. The unary operation symbol Nat
is intended to be interpreted in the "characteristic function" of the subset of natural
numbers of A'. In this way the structures N and A are glued up in the structure A'
and the unary operation symbol Hom is intended to be interpreted in the codification

of m in A'. All this is formalized in the following Lemma.

Lemma 2.2 Suppose A is the algebra of signature I previously described. Then,

there exists an algebra A' which is an expansion of A to I' and is a model of E.

Proof. Since Ais infinite, we may take a non trivial combinatory algebra M =
(M, ,KM,SM) bijective to A. Using one bijection from A to M we can translate the
operations of M in the operations ¢ ,KA,SA on A so that the structure (A,°,KA,SA)
is isomorphic to M.

A .
Let now Nat ', HomA be unary operations on A such that for acA
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A . .
K if there is n & N such that a = rnjA

NatA(a) = A
S otherwise
A 7(n) if there is n € N such that a = rn“A
Hom (&) = A
S otherwise

A, . . .

Here "m'" is the interpretation in the structure (A,-,KA,SA) of the numeral "n'.
o . . e A _A
This interpretation will be called the "codification" in the structure (A,*,K ,8 ) of

the natural number n.

The expansion A' is now defined as follows

A
A= (A;.,K ,SA’ NatA, HOmA)
We will now show that A'is a model of E. Axioms El and E2 are true in A' because

the reduct of A to cl is a combinatory algebra being isomorphic to M. To prove E3,

assume a a are elements of A which satisfy 1 /\ (Nat(xi)=K). By the def

1 fiim

e A roaA A

inition of Nat ~ there are natural numbers n_ ,...,n such that a.="n) ,...,a =T' .
1 m 1 717 m m

We must now show that a L. also satisfy the second member of the implication

170"

in E3. Now using Fact 1.5 we have

A 4A .rjA:rN A 9.3
Ff- nge ... no f (nl,...,nm) s (2.3)
s A
By the definition of Hom we have that
A r N A N
= 2.4
Hom (' f (nl,...,nm) } = w(f (nl, ,nm)) and (2.4)

A -
£ (Hom (@), Hom(a )) = ¢ (0, 1))
Since 7is a morphism
A A LN 2.5
fA(Hom (al),..., Hom (am)) =g (f (nl,...,nm)). (2.5)
Therefore, from (2.4) and (2.5) we can conclude
A A
HomA(FfA- a. e ... * am}} = fA(Hom {al},..u, Hom (am)} .

1

i aps A .
That E4 is true in A follows immediately from the definition of Hom  and (2.1). It is
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easy to prove that E5 is true in A’ from the definition of numeral and of NatA

Proof of E6. Assume that a,b,c & A satisfy the antecedent of E6, when x is substituted
by a, v by b and z by c¢. This means that there exist natural numbers m,n,q such
that

- oA
a="m, b="n"", c=Tg and G orm‘Aorn“A.‘q" =g h (2.8)

But from Fact 1.5 we have

st A rq‘A = rg(m,n,q)_'A . (2.7)

Since the interpretation of numerals corresponding to distinct natural numbers in a

non trivial combinatory algebra are distinct elements, from (2.6) and (2.7) we have
o aes A

that g(m,n,q) = 0. Hence, 7(m) =7 (n). Therefore, by the definition of Hom ,

HomA( "m"A) = HomA( rn"A)

Then, by (2.6) HomA(a) = HomA(b) which means that E6 is true in A'.
Given a term t € T(35) we now define a term T in T(cl) which describes the cale-
ulation that must be performed to cobtain the natural number n such that m(n) = tA.

Recall that the structure N is codified in (A,*,KA,SA) via M,

Definition 2.8 For every term t in T(3) define a term 1 in T(cl) by induction on
the complexity of t as follows:

(iy if t=ci, then 1 is "m‘i’ for i=1,...,r.

-+

(i) t=f(t1,...,tm), then 1 is Ff‘ t1° ... m

Lemma 2.8 For every term t of T(1):
(2.91) there exists a natural number n such that Ef—1 = ™n° ,

(2.9ii) E — Hom(1) = t.

Proof of (2.8i). By induction on the complexity of t. If t is the constant symbol c}.

then 1 is "m; . Hence, the number mJ. works. Let t be f(tl, e ,tm). By induction hyp
othesis we have natural numbers nl, e ,nm guch that
E—~1 =™ ,..., B—1 = m" i T o0 .
— tl n1 s , E tm no and t is Ff‘ tl. tm (2.10)

But Ff represents f in CL. So we have a fortiori

N
Eb—Fg njs ..o = ¢ (nl,...,nm)—' . (2.11)

Hence, when n=fN (nl,...,nm) we have (2.9i) from (2.10) and (2.11).

Proof of (2.8ii). By induction on the complexity of t. If t is the constant symbal cj
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then T is ‘"m}:' . Hence, from axiom E3 we get Er Hom(i)=t.
Let now t be f(tl,. .. ,tm). By induction hypothesis we have

B p— Hom(fl.)=ti , for i=1,...,m. (2.12)
Therefore, using (2.9i) and axiom E5, we get

Et— Nat(fi)=K, for i=1,...,m. (2.13)
Then, from (2.13) and axiom E3 we have

E +— Hom(Fg¢ fl- ...-Em)=f(Hom({l),.. . ,Hom(fm)). (2.14)
Hence, from (2.12) and from the definition of t we get Hom(f)=t.

Proof of Theorem A. Given terms tl,tz in T(¥) we have to prove that

E tl-'-tz if and only if At::t1=t2 . (2.15)

The "only if" direction follows immediately from Lemma 2.2. To prove the "if" direc-

tion assume

At et (2.18)
By Lemma 2.9 there exist natural numbers n,,n, such that
E — €i= i} and E— Hom(fi)=ti for i=1,2. (2.17)
Then, from (2.16) and (2.17)
A’}:Hom("ni‘ )=Hom( "n; ) . (2.18)
Hence, by the definition of HomA we get
n(n1)=ﬂ(n2). (2.19)

Therefore, there is a natural number g such that g(nl,nz,q)=0. Since G represents
the function g we have

El—Ge rnzornz‘.fq" = g (2.20)
Now, using axiom E6 and (2.20) we get E}——Hom(rn"1 y=Hom( rn‘z' ).
Hence, from (2.17) E}— t1 = tZ.

3. Cosemicomputable, Computable Data Types and remarks

We can also apply our method to cosemicomputable and to computable data types.
Suppose that A is a cosemicomputable algebra of signature I, N is a recursive

number algebra and 7 :N— A is a co-r.e. epimorphism. Let g' be a recursive func-
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tion of three variables which enumerates the complement of p=ker n. Therefore, for

m,neN, we have
w(m)# w(n) if and only if there is a natural number g such that g'(m,n,q)=0.

We denote the combinator which represents the recursive function g' by G'. More-
over, we let I' be the signature considered in the semicomputable case, i.e.
Z'= Zwclu{Hom,Nat} .

Now, consider the set E_ of conditional equations obtained from E by replacing

F
E6 with the new axiom

(EES)F (Nat(x)=KA Nat(y)=KANat(z)=KA Glexeyez = 0" A Hom(x)=Hom(y) )~ K=S.
(The subscript F is for "final semantics"). Then we have

Theorem B. Let A be a cosemicomputable algebra of signature I and let EF be
the finite set of conditional equations in the signature I' as previously described.

Then, for all t ,tze T(Z) the following holds:

1

A= ‘1(t1=t2) if and only if BLU {17t} b— K=5

The proof of Theorem B can be given in complete analogy with the proof of
Theorem A.

Now consider a computable algebra A. Assume that N is as before and 7 :N+A
such that ker 7 is recursive. Then, define the set E c of conditional equations in

the signature I'' by EC=EUE We have

P
Theorem C. Let A be a computable algebra of signature £ and let EC be the fi-
nite set of conditional equations in the signature I ' as previously defined. Then,

for all tl,tzeT( %) the following holds:

Ap= t1=t2 if and only if Ec{- t1=t2 and

ABE ty=t, if and only if BLU {t,5t,} —K=S.

The proof follows immediately from Theorem A and from Theorem B

We conclude with the following two remarks.

Remark 1. In the introduction we said that we would treat the case of signature
Z in a single sort in order to simplify notation. We now want to biefly explain how

the method extends to many sorted algebras. Let I be a many sorted finite signa-
ture with a finite set of sorts S. A S-sorted algebra has a carrier Ag of sort s for
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every s in S. We say that a S-sorted algebra N is a recursive number algebra if
every carrier of sort s is the set N of natural numbers and the operations of N are
recursive functions (Cf. [B-T 86 ] ). We say that A is a semicomputable S-sorted
algebra of signature £ if there exists a recursive S-sorted algebra N of signature
v and r.e. epimorphism w : N - A. When se 8 let 7 be the s-component of w. If
c],(s) is a constant symbol of sort s let m]_(s) be a natural number such that
5 5), A,

7 (m(® = o
where the right hand side member is the interpretation of the symbol c.(s) in the
algebra A. Let g be a recursive function of three variables that enumezrates kerﬂs
and GS be a combinator which represents the function g We say that a function
symbol f is of sort §y:008, 78 iff the interpretation of that symbol in A is a func-
tion of domain Aslx. . .xASm and range AS.

If the semicomputable algebra is infinite, then there is So € S such that AS is

infinite. Now take °

T s
b} LU ’K'S}U{Nat}U{Homs}seS

where

« is a function symbol of sort soso—> S,
K,S are constant symbols of sort 8,
Nat is a function symbol of sort S, 78,

HomS is a function symbol of sort s,7S-

Now the proof goes on by replacing, in a obvious manner, axioms E3, E4 and EB of
E. Moreover, the expansion A' of A to the signature I'is constructed by transla-
ting a combinatory algebra in the carrier ASo and by interpreting Nat and Ht:)mS in
order to codify the recursive S-sorted algebra N in A'. Then, Theorem A works also
for many-sorted algebras. The same argument holds for Theorem B and Theorem C.
Finally, we notice that if we allow SO to be a new sort, we get a result which is

analogous to Theorem 5.3 of [B-T 86] .

Remark 2. Let E be a set of conditional equations in a signature I' which ex-
tends the signature I . Consider the quotient structure T(E')EE , where EE is the

usual congruence defined by: t = tz iff E—1t

1%k =t2.Then there exists an embedding

1
JiCT(E/ 2 > o T2/t E

where the first algebra is the subalgebra of T(Z')/ *n generated by the operations
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of £ and the second algebra is the reduct of T(Z'")/ EE’ to the signature % . The
specification (¥ ',E) is said to be a Aidden ewiichment specification with respect to

the initial algebra semantics of the algebra A if

= Y = T(zH/= z
AECT(ENI= > = T(Z) gl

where the isomorphism into A is induced by the natural evaluation of the terms of
T(Z) in A (see[E-M 85], [B-T 88]).

Our Theorem A proves that there is such an isomorphism and that the embed~
ding j is a retraction, i.e. there exists a morphism h such that h oj = identity. In
this case we could say that the specification ( £',E) is a consdistent extension for A.
The term consistent extension is used in the literature (for example in [E-M 85 ]
Chap. 8) in quite similar situations but involves two specifications.

Then, according to Definition 3.4 of [B-T 86] we can restate Theorem A as

follows.

Proposition. The specification method (for abstract data types) by means of a
finite conditional equation consistent extension with no additional scrts, is complete

for the class of semicomputable data types.
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