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0-I ntroduct ion 

For many years  computer  sc ient is ts  have looked at data objects in terms of axioms 

which govern  the bei laviour  of data s t r uc tu r e s .  Such an attempt is called )~bsL'Lac~ 

Data Type S p e c ~ c ~ o , l .  Abstract ion is involved in the fact that  only proper t ies  

which are independent  of data representa t ion  are considered.  

In the a lgebraic  approach,  init iated in the paper  of LISKOV-ZiLLES [1974], data 

s t r uc t u r e s  are thought  of as a lgebras  in the sense of general  a lgebra  (see also [ Zi 

79] and specif icat ions are given in terms of equations or conditional equat ions .  But ,  

only par t icu lar  models of the spec i fy ing  axioms play a special role.  Data s t r u c tu r e s  

are usual ly  f ini te ,  sometimes potent ial ly infini te.  There fore ,  the s ignif icant  models of 

a data type  specification E in a s ignature  Z are  given by the class Algm(Z,E) whose 

members are the models of E which are f ini te ly genera ted  by elements named as const_ 

ants  in Z. The initial and final objects in Aigm(Z,E),  which are  g iven up to isomor- 

phism, determine the initial and final a lgebra  semantics,  r espec t ive ly .  More prec ise ly ,  

assuming that  two closed terms t , s  of s igna ture  Z are g iven,  then ,  the equation 

t=s is t rue  when the terms t , s  are evaluated in the initial a lgebra  if and only if the 

formal equation t=s can be p roved  from E. Moreover,  the equation t=s is consis tent  

with E if and only if it is t rue  in the final a lgebra .  Both initial and final a lgebra 

semantical approaches  have been widely d iscussed  (see [ADJ 75,78,82],  ~/a 79], the 

book ~-M 85]. 

BERGSTRA and TUCKER [1983 ] c~scussed the problem of charac te r iz ing  semicom~ 

utable (cosemicomputable, computable) data types by means of finite conditional sp-  

ecification with hidden funct ions  and no additional sor ts  plus initial a lgebra  semantics 

(*) Research performed under  the auspices of the Italian CNR and MPI. This is a 
rev i sed  vers ion  of prev ious  (unpubl ished)  paper  which circulated under  the t i t le:  
Finite Specification of Data Types  with ex t r a  Operat ions.  
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(plus final a lgebra  semantics) ,  plus both semantics,  respec t ive ly .  However,  the 

problem is solved only for cosemicomputable and computable data types .  

We have t r ied to solve the problem for semicomputable data types giving a char-  

acterizat ion which is weaker than that  conjectured in the paper  [B-T 83]. More p rec  

isely,  let us assume A is an infinite semicomputable a lgebra of s igna ture  Z and f ini t -  

e ly  genera ted  by  constants  named in its s igna ture .  Then,  we can determine a finite 

conditional equation spec i f i ca t i on (~E)  where z '  is a finite s igna ture  ex tend ing  z 

with no additional sor ts  so that :  given two closed terms t , s  of s igna ture  Z, then 

(1) t=s is t rue  in A if and only if t=s is provable from E. 

Moreover,  our method provides  an expansion A' to s ignature  Z' of the s t ruc tu re  h 

such that  A ~ is a model of E. However,  A' in 'our  theorem is not t he  initial a lgebra of 

Alg m (Z ' ,E) ,  as BERGSTRA and TUCKER conjectured in the semicomputable case. In 

fact  we cannot p rove  for closed terms,  t ' ,  s ~ of s ignature  z': 

(2) t '=s '  is t rue  in ~ if and only if t '=s ~ is pro~able from E. 

This means that  the specification (Z' ,E) is a consis tent  extension but  not an enrichm 

ent of a specification for A (see [E-M 85, Chap. 6 ]). Fur thermore  our resul ts  also 

extend natural ly  to cosemicomputable and to computable data types  (see Theorems 

B and C). 

The agil i ty of proof via Combinatory Logic does not consent  comparison of the 

complexity of the set  of conditional equat ions E to the complexity of the recurs ive  

funct ions which define A. This problem will be explored in fu tu re  work [M-T 86 ] 

where it has also been proved  that  one single equation is suff ic ient  for  speci fy ing a 

computable a lgebra  as a hidden enrichment  under  both initial and final a lgebra  sem- 

antics (according to BERGSTRA and TUCKER Definition, see [B-T 83] and [B-T 8{)]. 

To simplify notation, we t rea t  the case of s ignature  Z in a single sor t .  However,  

the resul ts  can be easily ex tended to many-sor ted  a lgebras .  It is assumed that  the 

reader  is familiar with the papers  of Bergs t r a  and Tucker  [B-T  83], [B-T 86] and 

with the main papers  on specification theory ;  in par t icular  ~ -M 85]. Moreover,  the 

basic notations of un iversa l  a lgebra  and recurs ion  theory  are  assumed (see [Gr 78 ], 

~ z  79] ). In par t icu la r ,  it is assumed an unde r s t and ing  of the notions of semicomp- 

utable,  cosemicomputable and computable a lgebra  which can be found t rea ted  in full 

in MAL'CEV [1961] (see also [Ra 60]). 
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1-Preliminaries and Notations. 

Let Z be a finite algebraic signature having at least one constant symbol. We shal} 

denote ~ b Y { f l , . . . ,  fk' c 1 " " '  Cr} where f l , . . . , f k  are function symbols and c l ,  

. . . ,  c constant symbols. If A is an algebra of carrier A and signature ~ we denote 
r 

the in te rpre ta t ions  of the symbols oi' Z in the a lgeb raA b y #  f~k CA A 

AS pointed out in the introduction, we shall consider only algebras of finite signat- 

ure and in addition they are infinite and generated by elements named as constants 

in their signature. Hence, if an algebra is of signature E it is generated by the el- 
A A 

ements c 1 , . . . , c  r .  

For such a lgebras  the definit ions of semicomputable, cosemicomputable and comp- 

utable can be given more simply than in the general  case along the following lines 

(see [Ma 61] , [ B - T  86]).  

Definition 1.1 An a lgebra  N is a r ecurs ive  number a lgebra  if and only if the car  

t i e r  of N is the set  N of natura l  numbers and the operat ions of N are  r ecurs ive  

funct ions .  

Definition 1.2 Let A be an a lgebra  and N be a r ecu r s ive  number a lgebra  of the 

same s igna ture  and ~: N -~ A be a morphism. Then,  ~ is 

(i) a r ecu r s ive ly  enumerable ( r . e )  morphism, 

(ii) a co recurs ive ly  enumerable ( c o - r . e . )  morphism, 

(iii) a r ecu r s ive  morphism, 

if and only if ker  n = p is 

(i) a r ecu r s ive ly  enumerable relat ion,  

(it) a relation whose complement in N 2 is r ecu r s ive ly  enumerable,  

(iii) a r ecu r s ive  relat ion,  

r espec t ive ly .  

Definition 1.3 Let A be an a lgebra .  Then,  A is 

(i) semicomputable, 

(it) cosemicomputable, 

(iii) computable, 

if and only if there  exis ts  a r ecu r s ive  number a lgebra  N (of t~e same s igna ture)  and 

a surjective ~ : N -~ A such that ~ is 

(i) a r.e epimorphism, 

(it) a co-r.e, epimorphism, 

(iii) a recursive epimorphism, respectively. 
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For  t h e  fo l lowing  d i s c u s s i o n  we n e e d  some f a c t s  a b o u t  c o m b i n a t o r y  a l g e b r a s  a n d  

c o m b i n a t o r y  logic t h a t  we r eca l l  i n  o r d e r  to f ix  t e r m i n o l o g y  a n d  n o t a t i o n  0 fo r  a c o m p r  

e h e n s i v e  t r e a t m e n t  see  [Ba 81] ,  [H-S 80] ) .  L e t  cl = { , , K , S }  be  a s i g n a t u r e  s u c h  t h a t  

- is  a symbol  of b i n a r y  o p e r a t i o n  a n d  K,S  a r e  c o n s t a n t  s y m b o l s .  A c o m b i n a t o r y  a l g e -  

b r a  is a s t r u c t u r e  M = (M, • , K M , s  M) of  s i g n a t u r e  cl w h i c h  s a t i s f i e s  t h e  ax ioms :  

E l .  K o x - y  = x 

E2. S - x o y . z  = x - z ,  ( y , z )  , 

w h e r e  t h e  a s s o c i a t i o n  f o r  t h e  o p e r a t i o n  symbo l  • is  done  a s  u s u a l  f rom t h e  le f t  so t h a t  

MlOM { . . . o  M k means  ( . . . ( ( M 1 - M  2 )-M 3) . . . .  ) , M  k . A c o m b i n a t o r  is a t e r m  in  

T ( c l ) ,  i . e .  a t e r m  of s i g n a t u r e  cl w i th  no  v a r i a b l e s .  Some c o m b i n a t o r s  a r e  ca l l ed  

n u m e r a l s .  More s p e c i f i c a l l y ,  if  n is a n e t u r a l  n u m b e r  we d e n o t e  b y  rn~ a - c o m b i n a t o r  

w h i c h  is ca l led  t h e  n u m e r a l  r e p r e s e n t i n g  n a n d  is d e f i n e d  i n d u c t i v e l y  as  fol lows:  

r0~ = K*I rn+ l  1 = S , B o r n  7 ( 1 . 4 )  

w h e r e  as  u s u a l  I is t h e  c o m b i n a t o r  S-K°K a n d  B is t h e  c o m b i n a t o r  S , ( K o S ) . K .  We 

d e n o t e  t h e  e q u a t i o n a l  t h e o r y ,  whose  non  logica l  axioms a r e  E1 a n d  E2 a n d  w h i c h  is 

named  C o m b i n a t o r y  Logic ,  b y  CL. 

What we n e e d  is  t h e  fo l lowing  ( s e e  [ Ba  81 ]) 

Faot  1 .5 .  Fo r  e v e r y  r e c u r s i v e  f u n c t i o n  f t h e r e  e x i s t s  a c o m b i n a t o r  Ff  w h i c h  repres_ 

ents f in CL, viz. for all natural numbers nl,...,n m CL ~-- Ff n I ... m 

r f ( n  I . . . . .  n m f .  

2-Semic0mloutable  Da ta  T y p e s .  Main r e s u l t .  

T h e o r e m  A. Let  A be  a s e m i c o m p u t a b l e  a l g e b r a  of s i g n a t u r e  Z . T h e n ,  t h e r e  e x i s t s  

a f i n i t e  s e t  E of c o n d i t i o n a l  e q u a t i o n s  in  a s i g n a t u r e  X' e x t n e d i n g  ~ s u c h  t h a t  f o r  

all  t l , t  2 e_ T ( ~ ) :  El--- t l = t  2 if  a n d  o n l y  i f  A ~ t l = t  2 • 

In  o r d e r  to p r o v e  T h e o r e m  A we m u s t  c a r r y  ou t  some c o n s t r u c t i o n s  a n d  p r o v e  two 

Lemmas.  

Le t  A be  a s emicom pu t ab l e  i n f i n i t e  a l g e b r a  of s i g n a t u r e  Z = { f l ' " "  ' f k ' C l " ' " c ~  , 

N b e  a r e c u r s i v e  n u m b e r  a l g e b r a  of  s i g n a t u r e  X a n d  ~ : N -~ A b e  a r . e .  e p i m o r p h i s m .  

Le t  u s  s u p p o s e  t h a t  m l , . . . , m  r a r e  n a t u r a l  n u m b e r s  s u c h  t h a t  

A ( 2 . 1 )  
~(m 1) = c A , . . . ,  ~(m r )  = c r 

A A 
a n d  m.=m. i f f  c. = c. f o r  i , j = l ,  . . . .  r .  

1 ] 1 ] 
Let  p b e  k e r  ~ a n d  g be  a r e c u r s i v e  f u n c t i o n  of t h r e e  v a r i a b l e s  s u c h  t h a t  f o r  
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m,n  ~ N , ( m , n ) ~  p i f f  t h e r e  is a n a t u r a l  n u m b e r  p s u c h  t h a t  g ( m , n , p )  = 0. When 

f is a f unc t i on  sz]mbol which is not  cons t an t  of s i g n a t u r e  Z, the  combina tor  which r e p r  

e s e n t s  in CL the  f u n c t i o n  fN which  i n t e r p r e t e s  the  symbol  f in the  r e c u r s i v e  nu_m 

b e t  a l g e b r a  N is deno t ed  b y  Ff .  F ina l ly ,  the  combina tor  which  r e p r e s e n t s  the  r e c  

u r s i v e  f u n c t i o n  g which  e n u m e r a t e s  k e r ~  is deno t ed  b y  G. 

Let  now ~' be  the  s i g n a t u r e  

{ f l " " ' f k ' c l  ' ' ' ' ' c r '  ° , K , S ,  Nat ,  Horn} 

i . e . ,  Z' is ~ u cl p lus  two u n a r y  ope ra t i on  symbols  Nat,Horn. Cons ide r  the  fol lowing 

l ist  of condi t iona l  e q u a t i o n s  in ~', where  x , y , x l , x  2 . . . .  deno te  v a r i a b l e s .  To s impl i fy  

no ta t ion  we ment ion on ly  one of the  func t i on  symbols  f l ' " "  ' f k '  s ay  it  f of m a r g u m e n t s  

E l -E2  axioms of  CL. 

E3 is the conjunction for all f in ~ of 

(1 ~ m  Nat (x i )=K)  ÷ Hom(Ff* x 1- . . . .  Xm) = f ( H o m ( x l )  . . . . .  Hom(Xm)) 

E4 / ~  l < j  =<r Hom( ._jCm~ ) C. 
] 

E5 Na t ( r0  ~) = K I, ( N a t ( x )  = K-+  N a t ( ( S o B ) , x )  =K) 

E6 ( N a t ( x )  = K ^ Na t (y )  = K /x Nat(z)  = K A G . x o y ° z  = r0")--+ Hom(x)=Hom(y) .  

The  se t  of axioms El -E6  is deno t ed  b y  E. The  idea  we have  exp lo ided  fo r  w r i t i n g  

down the  se t  of axioms E can  be r o u g h l y  d e s c r i b e d  as follows. The  a l g e b r a  A may be  

e x p a n d e d  to a s t r u c t u r e  A' which  also becomes  a combina to ry  a l g e b r a .  T h e r e f o r e ,  the  

s t r u c t u r e  N can be  codi f ied  in the  e x p a n s i o n  A'  of A. The  u n a r y  ope ra t i on  symbol  Nat 

is i n t e n d e d  to be  i n t e r p r e t e d  in the  " c h a r a c t e r i s t i c  f u n c t i o n "  of the  s u b s e t  of na tu r a l  

n u m ber s  of A' .  In th i s  way  the  s t r u c t u r e s  N and  A a re  g lued  up  in t he  s t r u c t u r e  A' 

and  the  u n a r y  o p e r a t i o n  symbol  Horn is i n t e n d e d  to be i n t e r p r e t e d  in t he  codif ica t ion  

of ~ in A' .  All th is  is formal ized  in the  fo l lowing Lemma. 

Lemma 2.2 Suppose  A is the  a l g e b r a  of s i g n a t u r e  Z p r e v i o u s l y  d e s c r i b e d .  T h e n ,  

t h e r e  ex i s t s  an a l g e b r a  A' which  is an  e x p a n s i o n  of A to Z' and  is a model of E. 

Proof .  Since  A is i n f in i t e ,  we may take  a non t r i v i a l  combina to ry  a l g e b r a  M = 

( M , ° , K M , s  M) b i j e c t i v e  to A. Us ing  one b i j ec t ion  from A to M we can t r a n s l a t e  the  

ope ra t i ons  of  M in the  ope ra t i ons  • , K A , s  A on A so tha t  the  s t r u c t u r e  ( A , . , K A , s  A) 

is i somorphic  to M. 

Let  now Nat A,  Hom A be u n a r y  ope ra t i ons  on A s u c h  tha t  fo r  a ~ A  
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I K A if there  is n ~ N such that  

NatA(a) = S A otherwise 

a = rn~A 

{ 7  (n) 
Horn A(a) = sA 

if there  is n ~ N such that  a = rnl 

otherwise 

Here r n ' A  is the in terpre ta t ion  in the s t ruc tu re  ( A , * , K A , s  A) of the numeral rn~. 

This in terpre ta t ion  will be called the "codification" in the s t ruc tu re  ( A , * , K A , s  A) of 

the natural number n. 

The expansion A' is now defined as follows 

A' = (A,°,KA,s A, Nat A, Horn A) 

We will now show that A' is a model of E. Axioms E1 and E2 are true in A' because 

the reduct  of A' to cl is a combinatory a lgebra  being isomorphic to M. To prove  E3, 

assume a l ,  . . . .  am are elements of A which sa t i s fy  1 <i~<<m (Nat(xi)=K).  By the def_ 

r ,A  =rn~A" inition of Nat A there  are natura l  numbers n l , . . . , n  m such that  al= n 1 , . . . .  a m m 

We must now show that  a l , . . .  ,am also sa t i s fy  the second member of the implication 

in E3. Now using Fact 1.5 we have 

A r • rnTA yfN(nl ,  qA Ff n lA-  = (2.3) 
• " " m " " ' ' n m )  ' 

By the definition of Horn A we have that 

. ) ,A ~(fN(nl ,  ,nm)) and HomA(rfN(nl ,  • . , n  m ) . . . .  

fA(HomA(al)  . . . . .  Horn(am ) = fA( ~(nl  ) . . . . .  ~ (nm))  . 

(2.4) 

Since ~ is a morphism 

fA(HomA(al)  . . . .  , HomA(am )) = ~ ( f N ( n l , . . .  ,nm) ) . (2.5) 

Therefore ,  from (2.4) and (2.5) we can conclude 

A A fA(HomA(al) HomA(am ) ) 
Hom (Ff- a I .... • am )) = '°'°' " 

That E4 is true in A' follows immediately from the definition of Hom A and (2.1). It is 
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A 
easy to prove that E5 is true in A' from the definition of numeral and of Nat • 

Proof of E6. Assume that a,b,c & A satisfy the antecedent of E6, when x is substituted 

by a, y by b and z by c. This means that there exist natural numbers m,n,q such 

t ha t  

a = r m ' A ,  b = r n ' A ,  c =rq "A and  G A - r m ~ A - r n T A r q  "A= ;0"A (2 .6)  

But  from Fact  1.5 we have  

G A Fin ~ A . r n l A ~ r q T A  = r g ( m , n , q )  n A  (2.7)  

Since the interpretation of numerals corresponding to distinct natural numbers in a 

non trivial cembinatory algebra are distinct elements, from (2.6) and (2.7) we have 

that g(m,n,q) = 0. Hence, ~(m) = ~ (n!. Therefore, by the definition of Hem A, 

HomA(rm~A ) = HomA( rnTA ) 

Then, by (2.6) HomA(a) = HomA(b) which means that E6 is true in A'. 

Given a term t ~ T(Z) we now define a term "t in T(cl) which describes the calc- 

ulation that must be performed to obtain the natural number n such that ~(n) = t A. 

Recall that the structure N is codified in (A,o,KA,s A) via M. 

Definition 2.8 For every term t in T(S) define a term ~ in T(cl) by induction on 

the complexity of t as follows: 

(i) if t=c i, then ~ is rm~'1 for i=l~...,r. 

(it) if t=f(t I ..... tm) , then ~ is Ff- E l, ...~ "tm 

Lemma 2.9 For every term t of T(z): 

(2.9i) there exists a natural number n such that E k--'t = Cnn , 

(2.9ii) E b---Hom(~) = t. 

Proof of (2 .9 i ) .  By  i n d u c t i o n  on the  complexi ty  of t .  If t is the  c o n s t a n t  symbol  c. 
] 

t h e n  ~ is ~m. ~ . Hence,  the  n u m b e r  m. works .  Let t be  f ( t l , .  . . , t m ) .  By i n d u c t i o n  hy]2 
] ] 

o{hesis we have  n a t u r a l  n u m b e r s  n l , . . .  , n  m such  tha t  

E F- "tl r ~ Eb---~ = ~n ~ and ~ is ^ .°~ (2.10) 
= nl '"" m m Ff- t I. .. m" 

But Ff represents f in CL. So we have a fortiori 

E F - - F f  • rn~  ° . . .orn~m = r f N ( n  1 , . . . , n m  )~ (2.11)  

Hence,  when  n=f N (n  1 . . . . .  nm) we have (2 .9i )  from (2.10)  and  (2 .11) .  

Proof of (2 .9f i ) .  By i n d u c t i o n  on the complexi ty  of t .  If t is the  c o n s t a n t  symbol  c. 
] 
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t h e n  ~ is rm7 . Hence ,  from axiom E3 we get  E~-Hom(t )=t .  
] 

Let now t be  f ( t l , . . .  , t in) .  By  i n d u c t i o n  hypo thes i s  we have  

E }--- Hom(t i )=t  i , for  i=l . . . . .  m. (2 .12)  

The re fo re ,  u s i n g  (2 .9i )  a n d  axiom ES, we get  

E t - - - -Nat ( t i )=K,  for  i = l , . . . , m .  (2 .13)  

T h e n ,  from (2.13} and  axiom E3 we have  

E F-- Horn(F} tl" . . . .  t m ) = f ( H ° m ( t l  ) . . . . .  H°m(tm) )" (2 .14)  

Hence,  from (2.12)  a n d  from the  def in i t ion  of t we get  Hom(t)=t .  

Proof of Theorem A. Given terms t l , t  2 in  T(~) we have to p rove  tha t  

E~--  t l= t  2 if  a n d  on ly  if  A ~ t l = t  2 . (2 .15)  

The  "only  if" d i r ec t ion  follows immediately from Lemma 2.2 .  To p rove  the  "if" d i r ec -  

t ion assume 

A ~ t l = t  2 (2.16)  

By Lemma 2.9 the re  ex is t  n a t u r a l  n u m b e r s  n l , n  2 such  tha t  

E ~ t.= rn~. a n d  E ~-- Hom(t i )=t  i for  i = i , 2 .  (2 .17)  
1 1 

T h e n ,  from (2.16)  a n d  (2 .17)  

A ' ~ H o m ( r n ;  )=Hom(rn~ ) . (2 .18)  

Hence,  b y  the  def in i t ion  of Horn A we get  

( n l ) =  ~ (n2 ) .  (2 .19)  

T h e r e f o r e ,  t he re  is a n a t u r a l  n u m b e r  q s u c h  tha t  g ( n l , n 2 , q ) = 0 .  Since G r e p r e s e n t s  

the  f u n c t i o n  g we have  

E ~ - - - G * r  -~.r %r ~ r01 (2 .20)  n I n 2 q = 

r ~ )=Hom(rn~ ).  Now, u s i n g  axiom E6 a n d  (2 .20)  we get  E~--Hom( n 1 z 

Hence,  from (2.17)  E~--  t 1 = t 2. 

3. Cosemicomputabte,  Computable  Data Ty p es  a n d  remarks  

We can  also app l y  o u r  method to cosemicomputable  a n d  to computable  da ta  t y p e s .  

Suppose  tha t  A is  a cosemicomputable  a l g eb ra  of s i g n a t u r e  Z , N is a r e c u r s i v e  

n u m b e r  a lgeb ra  and  ~ :N--+ A is a c o - r . e ,  epimorphism.  Let g'  be  a r e c u r s i v e  f u n c -  
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tion of th ree  var iables  which enumerates  the complement of p=ker ~. There fore ,  for  

m , n e N ,  we have 

(m)~ v(n)  if  and only if there  is a na tura l  number q such that  gr (m,n ,q)=0.  

We denote the combinator which r ep resen t s  the r ecu r s ive  function g'  by  G'. More- 

over ,  we let [ '  be the s igna ture  considered in the semieomputable case,  i . e .  

~= Z w e l ~ {  Horn,Nat } . 

Now, consider  the set E F of conditional equations obtained from E by  replacing 

E6 with the new axiom 

(E6) F ( N a t ( x ) = K ^ N a t ( y ) = K A N a t ( z ) = K A G ' . x , y , z  = r01/~.Hom(x)~Hom(y))-+K=S. 

(The subscr ip t  F is for  "final semant ics") .  Then we have 

Theorem B. Let g be a cosemicomputable a lgebra  of s igna ture  E and let E F be 

the finite set  of conditional equat ions in the s igna ture  Z' as p rev ious ly  descr ibed .  

Then,  for  all t l , t 2 ~ T ( Z  ) the following holds: 

A ~ 7( t l=t2)  if  and only ff EFkJ { t2=t2} }-- K=S 

The proof of Theorem B can be given in complete analogy with the proof  of 

Theorem A. 

Now consider  a computable a lgebra A. Assume that  N is as before and z :N->A 

such that  ke r  ~ is r ecu r s ive .  Then,  define the set  E C of conditional equations in 

the s igna ture  ~'  by  Ec=EVE F. We have 

Theorem C. Let A be a computable a lgebra  of s igna ture  Z and let E C be the f i-  

nite set  of conditional equat ions in the s igna ture  [ ' as p rev ious ly  defined.  Then ,  

for  all t l , t 2 e T  ( Z )  the following holds: 

A ~ t l=t  2 if  and only if  E c ~ - - t l = t  2 and 

A ¢ t l=t  2 i f  and only if  EC• {tl=t 2 } k--K=S. 

The proof  follows immediately from Theorem A and from Theorem B 

We conclude with the following two remarks .  

Remark 1. In the in t roduct ion we said that  we would t rea t  the case of s igna ture  

Z in a single sor t  in o rde r  to simplify notation. We now want to bief ly explain how 

the method ex tends  to many sor ted  a lgebras .  Let [ be a many sor ted  f ini te  s igna-  

tu re  with a f ini te  set  of sor ts  S. A S-so r t ed  a lgebra  has a ca r r i e r  A s of sor t  s for  
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e v e r y  s in  S. We s a y  t h a t  a S - s o r t e d  a l g e b r a  N is  a r e c u r s i v e  n u m b e r  a l g e b r a  i f  

e v e r y  c a r r i e r  of  s o r t  s is t h e  s e t  N of  n a t u r a l  n u m b e r s  a n d  t h e  o p e r a t i o n s  of /q a r e  

r e c u r s i v e  f u n c t i o n s  (Cf .  [ B - T  86 ] ) .  We s a y  t h a t  A is  a s e m i c o m p u t a b l e  S - s o r t e d  

a l g e b r a  of s i g n a t u r e  Z i f  t h e r e  e x i s t s  a r e c u r s i v e  S - s o r t e d  a l g e b r a  N of s i g n a t u r e  

a n d  r . e .  e p i m o r p h i s m  ~ : N -+ A. When s ~ S  le t  ~ b e  t h e  s - c o m p o n e n t  of  ~ .  I f  
S 

f ~ f ~ 

c <s/. is  a c o n s t a n t  symbol  of s o r t  s l e t  m! s )  b e  a n a t u r a l  n u m b e r  s u c h  t h a t  
] ] 

s (m!sl):] = (c~ s)lAs 
w h e r e  t h e  r i g h t  h a n d  s ide  m e m b e r  is t h e  i n t e r p r e t a t i o n  of t h e  symbol  c! s )  in  t h e  

] 

a l g e b r a  A. Let  ~ ffs be  a r e c u r s i v e  f u n c t i o n  of t h r e e  v a r i a b l e s  t h a t  e n u m e r a t e s  ker '~ 
s 

a n d  G b e  a c o m b i n a t o r  w h i c h  r e p r e s e n t s  t h e  f u n c t i o n  gs"  We s a y  t h a t  a f u n c t i o n  
s 

symbo l  f is of  s o r t  s ] . . . s  m -  -+s i f f  t h e  i n t e r p r e t a t i o n  of t h a t  symbo l  in  A is  a f u n c -  

t ion  of  domain  A x . . . x A  a n d  r a n g e  A . 
s 1 s m s 

I f  t h e  s e m i c o m p u t a b l e  a l g e b r a  is  i n f i n i t e ,  t h e n  t h e r e  is  So~ S s u c h  t h a t  A is 
S 

O 
i n f i n i t e .  Now t a k e  

w h e r e  

Z '  : Z U { o  , K . S } U { N a t } U  { Horn s } s e S  

• is a function symbol of sort s s -+ s , 
O o O 

K,S are constant symbols of sort So, 

Nat is a function symbol of sort s -+So, 
O 

Horn is a function symbol of sort s -+s. 
S O 

Now the proof goes on by replacing, in a obvious manner, axioms E3, E4 and E6 of 

E. Moreover, the expansion A' of A to the signature Z' is constructed by transla- 

ting a combinatory algebra in the carrier Aso and by interpreting Nat and Horn s in 

order to codify the recursive S-sorted algebra N in A'. Then, Theorem A works also 

for many-sorted algebras. The same argument holds for Theorem B and Theorem C. 

Finally, we notice that if we allow s to be a new sort, we get a result which is 
O 

analogous to Theorem 5.3 of [B-T 86] . 

Remark 2. Let E be a set of conditional equations in a signature Z' which ex- 

tends the signature 2 . Consider the quotient structure T(Z')~ E , where -=E is the 

usual congruence defined by: tl-=Et 2 iff E ~--tl=t2.Then there exists an embedding 

j:<T(E')/- E >Z ~--~ T(Z')/~EIZ 

where the first algebra is the subalgebra of T(Z')/- E generated by the operations 
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of Z and the second algebra is the reduct  of T(~') /~E~to the s ignature  ~ . The 

specification (~  ' ,E) is said to be a hidden e ~ c h m e ~  specification with respect  to 

the initial  a lgebra semantics of the a lgebra A if 

Au<T(Z')/-E> Z : T(Z')/-=EI Z 

where the isomorphism into A is induced by the natural evaluation of the terms of 

T(Z ) in A (see [E-M 85] ,  [B-T 86]). 

Our Theorem A proves that there is such an isomorphism and that the embed- 

ding ] is a retraction, i.e. there exists a morphism h such that h o j = identity. In 

this case we could say that the specification (Z',E) is a ao~istemt extension ~or A. 

The term consistent extension is used in the literature (for example in [E-M 85 ] 

Chap. 6) in quite similar situations but involves two specifications. 

Then, according to Definition 3.4 of [B-T 86 ] we can restate Theorem A as 

fellows, 

Proposition. The specification method (for abs t rac t  data types)  by  means of a 

finite conditional equation consis tent  extension with no additional sor ts ,  is complete 

for the class of semicomputable data types .  
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