Advertisement

The inverse scattering transform for multidimensional (2+1) problems

  • Athanassios S. Fokas
  • Mark J. Ablowitz
School
Part of the Lecture Notes in Physics book series (LNP, volume 189)

Keywords

Inverse Problem Singular Integral Equation Inverse Scattering Nonlinear Evolution Equation Inverse Scattering Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitayevskiî, Theory of Solitons. The Method of the Inverse Scattering Problem, Nauka, Moscow (in Russian), 1980.Google Scholar
  2. [2]
    R. Beals and R. R. Coifman:(i) Scattering, transformations spectrales, et équations d'évolution non lineaires, Seminaire Goulaoric-Meyer-Schwartz, 1980–1981, exp. 22, École Polytechnique, Palaiseau; (ii) Scattering and inverse scattering for first order systems (preprint);(iii) Scattering, transformations spectrales, et équations d'évolution non lineaires, Seminaire Goulaoric-Meyer-Schwartz, 1981–1982, exp. 21, École Polytechnique, Palaiseau.Google Scholar
  3. [3]
    (i) I. Hauser and F. J. Ernst, A homogeneous Hilbert problem for the Kinnersley-Chitre transformations. J. Math. Phys. 21, 1126–1140 (1980);(ii) A homogeneous Hilbert problem for the Kinnersley-Chitre transformations of electrovac space-times. ibid. 21, 1418–1422 (1980); (iii) Proof of a Geroch conjecture. ibid. 22, 1051 (1981); (iv) V. A. Belinskiî and V. E. Zakharov, Integration of the Einstein equations by the inverse scattering method and calculation of the exact soliton solution. Sov. Phys. JETP 48, 985993 (1978); (v) C. Cosgrove, Bäcklund transformations in the Hauser-Ernst formalism for stationary axisymmetric space-times. J. Math. Phys. 22, 2624–2639 (1981).CrossRefGoogle Scholar
  4. [4]
    [4](i) M. F. Atiyah and R. S. Ward, instantons and algebraic geometry. Commun. Math. Phys. 66, 117–124 (1977); (ii) M. F. Atiyah, N. J. Hitchin, V. G. Drinfield, and Manin I. Yu., Construction of instantons. Phys. Lett. 65A, 185–187 (1978).CrossRefGoogle Scholar
  5. [5]
    P. J. Olver, Evolution equations possessing infinetely many symmetries J. Math. Phys. 18, 1212–1215 (1977); Math. Proc. Camb. Phil. Soc. 88, 71 (1980).CrossRefGoogle Scholar
  6. [6]
    F. Magri, A simple model of the integrable hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978); ibid. Lecture Notes in Physics #120, p. 233, M. Boiti, F. Pipinelli, and G. Soliani, eds. Springer Verlag (1978).CrossRefGoogle Scholar
  7. [7]
    (i) I. M. Gel'fand and L. A. Dikii, Resolvents and hamiltonian systems. Funct. Anal. Appl. 11, 93–104 (1977);(ii) I. M. Gel'fand and I. Ya. Dorfman, Funct. Anal. Appl. 13, 248 (1979); ibid. 14 (1980).CrossRefGoogle Scholar
  8. [8(i)]
    A. S. Fokas, A symmetry approach to exactly solvable evolution equations. J. Math. Phys. 21, 1318 (1980)CrossRefGoogle Scholar
  9. [8(ii)]
    A. S. Fokas and R. L. Anderson, On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for hamiltonian systems. J. Math. Phys. 23, 1066 (1982)CrossRefGoogle Scholar
  10. [8(iii)]
    A. S. Fokas and B. Fuchssteiner, Bäcklund transformations for hereditary symmetries. Nonlinear Anal. TMA 5, 423 (1981)CrossRefGoogle Scholar
  11. [8(iv)]
    ibid., On the structure of symplectic operators and hereditary symmetries. Lett. Nuovo Cimento 28, 299 (1980)Google Scholar
  12. [8(v)]
    ibid., The hierarchy of the Benjamin-Ono equation. Phys. Lett. 86A, 341 (1981)Google Scholar
  13. [8(vi)]
    B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physics 4D, 47 (1981)Google Scholar
  14. [8(vii)]
    B. Fuchssteiner, Nonlinear Anal. TMA 3, 849 (1979); ibid. Prog. Theor. Phys. 65, 861 (1981); ibid. 68 (1982); ibid. Lett. Math. Phys. 4, 1977 (1980).Google Scholar
  15. [9]
    A. P. Fordy and J. Gibbons, Factorization of operators. II. J. Math. Phys. 22, 1170 (1981); ibid., Integrable nonlinear Klein-Gordon equations and Toda lattices. Commun. Math. Phys. 77, 21 (1980).Google Scholar
  16. [10]
    (i) B. A. Kupersbmidt and G. Wilson, Invent. Math. 62, 403 (1981); ibid. Commun. Math. Phys. 81, 189 (1981); (ii) Y. Kosmann-Schwartzbach, Hamiltonian systems of fibered manifolds. Lett. Math. Phys. 5, 229–237 (1981).Google Scholar
  17. [11]
    B. G. Konopelchen'ko, Transformation properties of the integrable evolution equations. Phys. Lett. 75A, 447 (1980); ibid. 79A, 39 (1980); ibid. 95B, 83 (1980); ibid. 100B, 254-260 (1981).Google Scholar
  18. [12]
    G. Z. Tu, Commutativity theorem of partial differential equations. Commun. Math. Phys. 77, 289–297 (1980).Google Scholar
  19. [13]
    (i) C. S. Gardner, The Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a hamiltonian system. J. Math. Phys. 12, 1548–1551 (1971); (ii) V. E. Zakharov and L. D. Fadeev, Korteweg-de Vries equation, a completely integrable hamiltonian system. Funct. Anal. Appl. 5, 280–287 (1971).Google Scholar
  20. [14]
    H. D. Wahlquist and F. B. Estabrook, Prolongation structures and nonlinear evolution equations J. Math. Phys. 16, 1–7 (1975 ibid. 17, 1293–1297 (1976); see also the contribution of these authors in Nonlinear Equations Solvable Via the IST, F. Calogero ed. (1977).CrossRefGoogle Scholar
  21. [15]
    L. Abellanas and A. J. Galindo, J. Math. Phys. 20, 1239 (1979);ibid. J. Math. Phys.24, 504 (1983); ibid. Lett. Math. Phys. 6, 391 (1982).Google Scholar
  22. [16]
    W. Oevel and B. Fuchssteiner, Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation. Phys. Lett. 88A, 323–327 (1982).Google Scholar
  23. [17]
    H. H. Chen, J. C. Lee, and J. E. Lin, to appear in Nonlinear Waves (preprint 1982).Google Scholar
  24. [18]
    B. G. Konopelchen'ko, The two-dimensional matrix spectral problem: General structure of the integrable equations and their Backlund transformations. Phys. Lett. 86A, 346–350 (1981); ibid. Commun. Math. Phys. (1982); ibid. J. Phys. A. 15 (1982).Google Scholar
  25. [19]
    M. Kashiwara and T. Miwa, Proc. Japan Acad. 57 A, 342 (1981); E. Date, M. Kashiwara, and T. Miwa, Proc. Japan Acad. 57 A, 387 (1981); M. Jimbo, E. Date, M. Kashiwara, and T. Miwa, J. Phys. Soc. of Japan 50, 3806 (1981); and RIMS preprints 359 and 360.Google Scholar
  26. [20]
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics #4, 1981.Google Scholar
  27. [21]
    H. H. Chen, A Bäcklund transformation in two dimensions. J. Math. Phys. 16, 2382–2384 (1975); D. V. Chudnovski, J. Math. Phys. 20, 2416 (1979).Google Scholar
  28. [22]
    J. Satsuma, N-soliton solution of the two-dimensional Korteweg-de Vries equation. J. Phys. Soc. of Japan 40, 286–290 (1976);J. Satsuma and M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979); A. Nakamura, Phys. Rev. Lett. 46, 751 (1981); ibid. Phys. Lett. 88A, 55 (1982); ibid. J. Math. Phys. 22, 2456 (1981); ibid. J. Phys. Soc. of Japan 50, 2469 (1981) ibid. 51, 19 (1981).Google Scholar
  29. [23]
    V. E. Zakharov and P. B. Shabat, A scheme for integrating the nonlinear equations cf mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226–235 (1974).CrossRefGoogle Scholar
  30. [24]
    (i) V. E. Zakharov and P. B.Shabat, Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem. II. Funct. Anal. Appl. 13, 166–174 (1979);(ii) V. E. Zakharov and A. V. Mikhaîlov, Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method. Sov. Phys. JETP 47, 1071–1027 (1978).Google Scholar
  31. [25]
    S. V. Manakov (private communication).Google Scholar
  32. [26]
    A. S. Fokas and M. J. Ablowitz, On a linearization of the Korteweg-de Vries and Painlevé II equations. Phys. Rev. Lett. 47, 1096 (1981).CrossRefGoogle Scholar
  33. [27]
    P. Santini, M. J. Ablowitz, and A. S. Fokas, The Direct Linearization and the RH Direct Method. (Preprint).Google Scholar
  34. [28]
    R. Rosales, Exact solutions of some nonlinear evolution equations. Stud. Appl. Math. 59, 117–151 (1978).Google Scholar
  35. [29]
    M. J. Ablowitz, A. S. Fokas, and R. L. Anderson, The direct linearizing transform and the Benjamin-Ono equation. Phys. Lett. A. 93, 375 (1983).CrossRefGoogle Scholar
  36. [30]
    A. S. Fokas and M. J. Ablowitz, The inverse scattering transform for the Benjamin-Ono —a pivot to multidimensional problems. Stud. Appl. Math. 68, 1–10 (1983).Google Scholar
  37. [31]
    R. G. Newton, J. Math. Phys. 21, 493 (1980); ibid. Geophys. J. R. Astr. Soc. 65, 191 (1981).CrossRefGoogle Scholar
  38. [32]
    (i) G. R. W. Quispel and H. W. Capel, Phys. Lett. 88A, 371 (1981); ibid 85A, 248 (1981); ibid Physics 110A, 41 (1981); (ii) F. W. Nijhoff, J. Van der Linden, G. R. W. Quispel, H. W. Capel, and J. Velthuizen, Physics A, (1982).Google Scholar
  39. [33]
    G. B. Whitham (private communication).Google Scholar
  40. [34]
    A. S. Fokas and M. J. Ablowitz, On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23, 2033–2042 (1982).CrossRefGoogle Scholar
  41. [35]
    A. S. Fokas and M. J. Ablowitz, Direct Linearization of the Korteweg-de Vries Equation. AIP Conference Proceedings #88, 237–241 (1982). M. Tabor and Y. M. Treve eds.Google Scholar
  42. [36]
    A. S. Fokas and M. J. Ablowitz, On the inverse scattering and direct linearizing transforms for the Kadomtsev-Petviashvili equation. Phys. Lett. A. 94A, 67–70 (1983).CrossRefGoogle Scholar
  43. [37]
    M. J. Ablowitz and A. S. Fokas, A Direct Linearization Associated with the Benjamin-Ono equation. Conference Proceedings #88, 229–236 (1982). M. Tabor and Y. M. Treve eds.Google Scholar
  44. [38]
    P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490 (1968).Google Scholar
  45. [39]
    C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, The Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Comm. Pure Appl. Math. 27, 97–133 (1974).Google Scholar
  46. [40]
    P. Delft and E. Trubowitz, Inverse scattering on the line. Comm. Pure Appl. Math. 32, 121–125 (1979).Google Scholar
  47. [41]
    (i) M. J. Ablowitz, D. J. Kaup, A. C. Newel, and H. Segur, Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264 (1973); (ii) ibid., Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973);(iii) ibid., The inverse scattering transform —Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974).CrossRefGoogle Scholar
  48. [42]
    V. E. Zakharov and P. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972).Google Scholar
  49. [43]
    G. B. Whitham, Linear and Nonlinear Waves. Wiley-Interscience, 1974.Google Scholar
  50. [44]
    D. J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class ψ xxx + 6 x + 6 = λψ. Stud. Appl. Math. 62, 189 (1980).Google Scholar
  51. [45]
    P. Delft, C. Tomei, and E. Trubowitz, Commun. Pure Appl. Math. 35, 567 (1982).Google Scholar
  52. [46]
    D. J. Kaup, The three-wave interaction —a nondispersive phenomenon. Stud. Appl. Math. 55, 9–44 (1976).Google Scholar
  53. [47]
    V. E. Zakharov and S. V. Manakov, The theory of resonance interaction of wave packets in nonlinear media. Sov. Phys. JETP 42, 842–850 (1976).Google Scholar
  54. [48]
    W. Symes, Relations among generalized Korteweg-de Vries systems. J. Math. Phys. 20, 721–725 (1979).CrossRefGoogle Scholar
  55. [49]
    M. J. Ablowitz and R. Haberman, Nonlinear evolution equations —two and three dimensions. Phys. Rev. Lett. 35, 1185–1188 (1975).CrossRefGoogle Scholar
  56. [50]
    A. C. Newell, The general structure of integrable evolution equations. Proc. R. Soc. London A365, 283–311 (1979).Google Scholar
  57. [51]
    R. Beals, The Inverse Problem for Ordinary Differential Operators on the Line, Yale, 1982 (preprint).Google Scholar
  58. [52]
    P. J. Caudrey, The inverse problem for a general N X N spectral equation. Physics 6D, 51–66 (1982).Google Scholar
  59. [53]
    (i) F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform. I and II. Nuovo Cimento 32B, 201–242 (1976); (ii) ibid., Nonlinear evolution equations solvable by the inverse spectral transform. Nuovo Cimento 39B, 1–54 (1977).Google Scholar
  60. [54]
    (i) M. Wadati, The modified Korteweg-de Vries equation. J. Phys. Soc. of Japan 32, 1681 (1977); (ii) M. Wadati, H. Sanki, and K. Konno, Relationships among inverse methods, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975).Google Scholar
  61. [55]
    M. Jaulent, Inverse scattering problems in absorbing media. J. Math. Phys. 17, 1351–1360 (1976).CrossRefGoogle Scholar
  62. [56]
    D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978); A. V. Mikhaîlov, Sov. Phys. JETP 23, 356 (1976).CrossRefGoogle Scholar
  63. [57]
    L. M. Alonso, Schrödinger spectral problems with energy-dependent potentials as sources of nonlinear Hamiltonian evolution equations. J. Math. Phys. 21, 2342–2349 (1980).CrossRefGoogle Scholar
  64. [58]
    (i) Y. Kodama, J. Satsuma, and M. J. Ablowitz, Nonlinear intermediate long wave equation: analysis and method of solution. Phys. Rev. Lett. 46, 687–690 (1981);(ii) Y. Kodama, M. J. Ablowitz, and J. Satsuma, Direct and inverse scattering problem of nonlinear intermediate long wave equations. J. Math. Phys. 23, 564–576 (1982).CrossRefGoogle Scholar
  65. [59]
    T. L. Bock and M. D. Kruskal, A two-parameter Miura transformation of the Benjamin-Ono equation. Phys. Lett. 74A, 173–176 (1979).Google Scholar
  66. [60]
    A. Nakamura, A direct method calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution. J. Phys. Soc. of Japan 47, 1701–1706 (1979).Google Scholar
  67. [61]
    J. Satsuma, T. Taha, and M. J. Ablowitz, On a Bäcklund Transformation and Scattering Problem for the Modified Intermediate Long Wave Equation. Preprint INS #12, May 1982.Google Scholar
  68. [62]
    E. Hille, ODE'S in the Complex Domain. Wiley-Interscience, 1976.Google Scholar
  69. [63]
    B. Riemann, Gesammelte Mathematische Werke. Leipzig, 1982.Google Scholar
  70. [64]
    D. V. Chudnovski, In Bifurcation Phenomena in Mathematical Physics and Related Topics, p. 386. C. Bardos and D. Bessis eds., D. Reidel, 1980.Google Scholar
  71. [65]
    H. Flaschka and A. C. Newell, Monodromy and spectrum preserving deformations. Comm. Math. Phys. 76, 65–116 (1980).CrossRefGoogle Scholar
  72. [66]
    (i) M. Sato, T. Miwa, and M. Jimbo, RIMS, Kyoto Univ. 14, 223 (1977); ibid. 15, 201 (1979); ibid. 15, 871 (1979);(ii) M. Ambo, T. Miwa, and K. Ueno, Physica 2D, 306 (1981); M. Jimbo and T. Miwa, Physica, 2D, 407 (1981); ibid. Physica 4D, 26 (1982).Google Scholar
  73. [67]
    D. Hilbert, Grundzüge der Integralgleichungen. Leipzig, 1924.Google Scholar
  74. [68]
    J. Plemelj, Problems in the Sense of Riemann and Klein. Wiley, 1964.Google Scholar
  75. [69]
    G. D. Birkhoff, Transactions of the AMS, 436 (1909); ibid. 199 (1910).Google Scholar
  76. [70]
    N. P. Erugin, Linear Systems of Ordinary Differential Equations. Academic Press, 1966.Google Scholar
  77. [71]
    F. D. Gakhov, Boundary Value Problems. Pergamon, 1966.Google Scholar
  78. [72]
    N. I. Muskhelishvili, Singular Integral Equations. Noordhoff, Groningen, 1953.Google Scholar
  79. [73]
    N. P. Vekua, Systems of Singular Integral Equations. Gordon and Breach, 1967.Google Scholar
  80. [74]
    (i) P. P. Zabreyko, A. I. Koshelev, M. A. Krasnoselskiî, S. G. Mikhlin, L. S. Rakovshchik, and V. Ya, Integral Equations —a Reference Text. Noordhoff Int., Leyden, 1975; (ii) S. Prossdorf, Some Classes of Singular Equations. North-Holland, 1978.Google Scholar
  81. [76]
    M. G. Krein, Uspekhi Mat. Nauk 13, 3 (1958).Google Scholar
  82. [76]
    I. Gohberg and M. G. Krein, Uspekhi Mat. Nauk 13, 2 (1958).Google Scholar
  83. [77]
    P. Delft (private communication).Google Scholar
  84. [78]
    A. S. Fokas and M. J. Ablowitz, On the initial value problem of Painlevé II. (Preprint).Google Scholar
  85. [79]
    R. G. Newton, On a generalized Hilbert problem. J. Math. Phys. 23, 2257–2265 (1982).CrossRefGoogle Scholar
  86. [80]
    B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media. Sov. Phys. Doklady 15, 539–541 (1970).Google Scholar
  87. [81]
    V. Dryuma, Sov. Phys. JETP Lett. 19, 387 (1974).Google Scholar
  88. [82]
    A. Davey and K. Stewartson, On three-dimensional packets of surface waves. Proc. Roy. Soc. London A338, 101–110 (1974).Google Scholar
  89. [83]
    D. J. Benney and G. J. Roskes, Wave instabilities. Stud. Appl. Math. 48, 377–385 (1969).Google Scholar
  90. [84]
    (i) V. E. Zakharov and S. V. Manakov, Soliton theory. Sov. Sci. Phys. Rev. 1, 133–190 (1979); (ii) S. V. Manakov, The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev-Petviashvili equation. Physica 3D, 420–427 (1981).Google Scholar
  91. [85]
    H. Segur, Comments on IS for the Kadomtsev-Petviashvili Equation, AIP Conference Proceedings #88, 211–228 (1982). La Jolla, 1981. M. Tabor and Y. M. Treve eds.Google Scholar
  92. [86]
    (i) D. J. Kaup, The inverse scattering solution for the full three-dimensional three-wave resonant interaction. Physica 1D, 45–67 (1980); (ii) H. Cornille, Solutions for the nonlinear three-wave equations in three-spatial dimensions. J. Math. Phys. 20, 1653–1666 (1979); (iii) L. P. Niznik, Ukranian Math. J. 24, 110 (1972).Google Scholar
  93. [87]
    A. S. Fokas and M. J. Ablowitz, On the inverse scattering of the time dependent Schrödinger equation and the associated KPI equation, INS #22, Nov. 1982 (to appear in Stud. Appl. Math.).Google Scholar
  94. [88]
    M. J. Ablowitz, D. Bar Yaacov, and A. S. Fokas, On the IST for KPII, INS #21, Nov. 1982 (to appear in Stud. Appl. Math.).Google Scholar
  95. [89]
    A. S. Fokas, On the inverse scattering of first order systems in the plane related to nonlinear multidimensional equations, INS #23, Dec. 1982 (preprint).Google Scholar
  96. [90]
    A. S. Fokas and M. J. Ablowitz, On a method of solution for a class of multidimensional problems. (Preprint).Google Scholar
  97. [91]
    A. S. Fokas and M. J. Ablowitz, On the inverse scattering transform of multidimensional nonlinear equations related to first order systems in the plane. Preprint INS #24, Jan. 1983.Google Scholar
  98. [92]
    L. Hörmander, Complex Analysis in Several Variables. Van Nostrand, 1966.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Athanassios S. Fokas
    • 1
  • Mark J. Ablowitz
    • 1
  1. 1.Department of Mathematics and Computer ScienceClarkson College of TechnologyPotsdamUSA

Personalised recommendations