Advertisement

Langages algebriques deterministes et groupes abeliens

  • J -F. Perrot
  • J. Sakarovitch
Dienstagvormittag Hauptvortrag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 33)

Keywords

Context Free Language Deterministic Language Nous Obtenons Deterministic Context Free Language Proposition Suivante 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliographie

  1. [1]
    L. BOASSON, Paires itérantes et langages algébriques, Thèse Sc. Math., Univ. Paris VII, 1974.Google Scholar
  2. [2]
    Y. COCHET et M. NIVAT, Une généralisation des ensembles de Dyck, Israël J. Math. 9 (1971) 389–395.Google Scholar
  3. [3]
    S. GINSBURG et S. GREIBACH, Deterministic Context free Languages, Inf. and Control 9 (1966) 620–648.Google Scholar
  4. [4]
    M. HARRISON et I. HAVEL, On the Parsing of Deterministic Languages, J. Assoc. Comput. Mach. 21 (1974) 525–548Google Scholar
  5. [5]
    W. OGDEN, Intercalation Theorems for Push-down Store and Stack Languages, Ph. D. Thesis, Stanford 1968.Google Scholar
  6. [6]
    J-F. PERROT, Monoïdes syntactiques des languages algébriques, à paraître dans les Actes de l'Ecole de Printemps sur les Langages algébriques, Bonascre 1973.Google Scholar
  7. [7]
    J. SAKAROVITCH, Monoïdes syntactiques et langages algébriques, Thèse de 3ème cycle, Paris, à paraître en 1975.Google Scholar
  8. [8]
    J. SMITH, Monoid acceptors and their relation to formal languages, Ph.D. Thesis, University of Pennesylvania, 1972.Google Scholar
  9. [9]
    E. VALKEMA, Zur Charakterisierung formuler Sprachen durch Halbgruppen, Dissertation, Kiel 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J -F. Perrot
  • J. Sakarovitch

There are no affiliations available

Personalised recommendations