Advertisement

Minimally Invasive Biomarkers for Therapy Monitoring

  • P. McSheehy
  • P. Allegrini
  • S. Ametaby
  • M. Becquet
  • T. Ebenhan
  • M. Honer
  • S. Ferretti
  • H. Lane
  • P. Schubiger
  • C. Schnell
  • M. Stumm
  • J. Wood
Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/4)

Abstract

Development of new drugs and optimal application of the drugs currently in use in clinical chemotherapy requires the application of biomarkers. Ideally, these biomarkers would stratify patients so that only those patients likely to respond to a particular therapy receive that therapy. However, that is not always feasible, and an alternative is to make use of early response biomarkers to determine the responding population. In this paper, a number of generic (i.e. not necessarily specific to the action mechanism of the compound) early-response biomarkers are discussed and compared in different models and with three compounds with quite different mechanisms of action: a VEGF-R inhibitor (PTK787), an mTOR inhibitor (RAD001) and a microtubule stabiliser (EPO906). The methods include noninvasive DCE-MRI and PET imaging for measuring tumour vascularity, metabolism and proliferation, as well as the minimally invasive WIN method for measuring tumour interstitial pressure (IFP). The data show that drug-induced changes in IFP (ΔIFP) involve mechanism-dependent changes in the tumour vascular architecture, and that ΔIFP may be considered a universal generic early-response marker of tumour response to therapy.

Keywords

Interstitial Fluid Pressure Tumour Blood Flow Blood Flow Index Tumour Blood Volume BN472 Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ferretti S, Allegrini PR, O'Reilly T, Schnell C, Stumm M, Wartmann M, Wood J and McSheehy PM (2005) Patupilone induced vascular disruption in orthotopic rodent tumor models detected by magnetic resonance imaging and interstitial fluid pressure. Clin Cancer Res 11:7773–7784CrossRefPubMedGoogle Scholar
  2. Jain RK (1994) Barriers to drug deliver in solid tumors. Sci Am 271:58–65CrossRefPubMedGoogle Scholar
  3. Lee L, Sharma S, Morgan B, Allegrini P, Schnell C, Brueggen J, Cozens R, Horsfield M, Guenther C, Steward WP, Drevs J, Lebwohl D, Wood J, McSheehy PM (2006) Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (VEGF) receptor inhibitor, PTK787/ZK 222584 (PTK/ZK): translation of biological activity in a mouse melanoma metastasis model to phase I studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother Pharmacol 57:761–71CrossRefPubMedGoogle Scholar
  4. Mankoff DA, Muzi M, Krohn KA (2003) Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method? Mol Imaging Biol 5:281–285CrossRefPubMedGoogle Scholar
  5. McSheehy P, Allegrini P, Honer M, Ebenhan T, Ametaby S, Schubiger P, Schnell C, Stumm M, O'Reilly T, Lane H (2007) Monitoring the activity of the mTor pathway inhibitor RAD001 (everolimus) non-invasively by functional imaging. Targeted Oncol 2:130–131Google Scholar
  6. Milosevic M, Fyles A, Hedley D, Pintilie M, Levin W, Manchul L, Hill R (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61:6400–6405PubMedGoogle Scholar
  7. Rudin M, McSheehy PM, Allegrini PR, Rausch M, Baumann D, Becquet M, Brecht K, Brueggen J, Ferretti S, Schaeffer F, Schnell C, Wood J (2005) PTK787 / ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumors and inhibits their growth in vivo. NMR Biomed 18:308–321CrossRefPubMedGoogle Scholar
  8. Rutz HP (1999) A biophysical basis of enhanced interstitial fluid pressure in tumors. Med Hypotheses 53:526–529CrossRefPubMedGoogle Scholar
  9. Schnell CR, Stauffer F, Allegrini PR, O'Reilly T, McSheeny PMJ, Dartois C, Stumm M, Cozens R, Littlewood-Evans A, García-Echeverría C, Maira S-M (2008) Effects on the dual pan-class I PI3K/mTor inhibitor NVP-BEZ235 on the tumour vasculature: implications for clinical imaging. Cancer Res 68 (in press)Google Scholar
  10. Taghian AG, Abi-Raad R, Assaad SI, Casty A, Ancukiewicz M, Yeh E, Molokhia P, Attia K, Sullivan T, Kuter I, Boucher Y, Powell SN (2005) Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications. J Clin Oncol 23:1951–1961CrossRefPubMedGoogle Scholar
  11. Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, Lamalle L, Décorps M (2001) Vessel size imaging. Magn Reson Med 45:397–408CrossRefPubMedGoogle Scholar
  12. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • P. McSheehy
    • 1
  • P. Allegrini
    • 2
  • S. Ametaby
    • 3
  • M. Becquet
    • 1
  • T. Ebenhan
    • 3
  • M. Honer
    • 3
  • S. Ferretti
    • 1
  • H. Lane
    • 1
  • P. Schubiger
    • 3
  • C. Schnell
    • 1
  • M. Stumm
    • 1
  • J. Wood
    • 1
  1. 1.Oncology ResearchNovartis Pharma AGBaselSwitzerland
  2. 2.Global Imaging GroupNovartis Pharma AGBaselSwitzerland
  3. 3.Animal Imaging CenterRadiopharmaceutical Sciences of ETH, PSI and USZZurichSwitzerland

Personalised recommendations