The Interplay Between MYC and HIF in the Warburg Effect

Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2007/4)


c-MYC and the hypoxia-inducible factors (HIFs) are critical factors for tumorigenesis in a large number of human cancers. While the normal function of MYC involves the induction of cell proliferation and enhancement of cellular metabolism, the function of HIF, particularly HIF-1, involves adaptation to the hypoxic microenvironment, including activation of anaerobic glycolysis. When MYC-dependent tumors grow, the hypoxic tumor microenvironment elevates the levels of HIF, such that oncogenic MYC and HIF collaborate to enhance the cancer cell's metabolic needs through increased uptake of glucose and its conversion to lactate. HIF is also able to attenuate mitochondrial respiration through the induction of pyruvate dehydrogenase kinase 1 (PDK1), which in part accounts for the Warburg effect that describes the propensity for cancers to avidly take up glucose and convert it to lactate with the concurrent decrease in mitochondrial respiration. Target genes that are common to both HIF and MYC, such as PDK1, LDHA, HK2, and TFRC, are therefore attractive therapeutic targets, because their coordinate induction by HIF and MYC widens the therapeutic window between cancer and normal tissues.


Genomic Instability Mitochondrial Biogenesis Mitochondrial Reactive Oxygen Species Nucleotide Metabolism Antitumorigenic Effect 


  1. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645CrossRefPubMedGoogle Scholar
  2. Amati B, Alevizopoulos K, Vlach J (1998) Myc and the cell cycle. Front Biosci 3:D250–D268PubMedGoogle Scholar
  3. Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K, Fahlen S, Hydbring P, Soderberg O, Grummt I et al (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310CrossRefPubMedGoogle Scholar
  4. Archambault V, Ikui AE, Drapkin BJ, Cross FR (2005) Disruption of mechanisms that prevent rereplication triggers a DNA damage response. Mol Cell Biol 25:6707–6721CrossRefPubMedGoogle Scholar
  5. Baudino TA, Cleveland JL (2001) The Max network gone mad. Mol Cell Biol 21:691–702CrossRefPubMedGoogle Scholar
  6. Bello-Fernandez C, Packham G, Cleveland JL (1993) The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A 90:7804–7808CrossRefPubMedGoogle Scholar
  7. Berra E, Ginouves A, Pouyssegur J (2006) The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep 7:41–45CrossRefPubMedGoogle Scholar
  8. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H (1990) Sequence-specific DNA binding by the c-Myc protein. Science 250:1149–1151CrossRefPubMedGoogle Scholar
  9. Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN, Weintraub H (1993) Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13:5216–5224PubMedGoogle Scholar
  10. Blackwood EM, Eisenman RN (1991) Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217CrossRefPubMedGoogle Scholar
  11. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51CrossRefPubMedGoogle Scholar
  12. Boyd KE, Farnham PJ (1997) Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol Cell Biol 17:2529–2537PubMedGoogle Scholar
  13. Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19:223–229CrossRefPubMedGoogle Scholar
  14. Burgin A, Bouchard C, Eilers M (1998) Control of cell proliferation by Myc proteins. Results Probl Cell Differ 22:181–197PubMedGoogle Scholar
  15. Cameron E, Pauling L, Leibovitz B (1979) Ascorbic acid and cancer: a review. Cancer Res 39:663–681PubMedGoogle Scholar
  16. Cole MD, McMahon SB (1999) The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18:2916–2924CrossRefPubMedGoogle Scholar
  17. Cole MD, Nikiforov MA (2006) Transcriptional activation by the Myc oncoprotein. Curr Top Microbiol Immunol 302:33–50CrossRefPubMedGoogle Scholar
  18. Cory S, Harris AW, Langdon WY, Alexander WS, Corcoran LM, Palmiter RD, Pinkert CA, Brinster RL, Adams JM (1987) The myc oncogene and lymphoid neoplasia: from translocations to transgenic mice. Hamatol Bluttransfus 31:248–251Google Scholar
  19. Cowling VH, Cole MD (2007) The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol Cell Biol 27:2059–2073CrossRefPubMedGoogle Scholar
  20. Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis and metabolism. Mol Cell Biol 19:1–11PubMedGoogle Scholar
  21. Dang CV, McGuire M, Buckmire M, Lee WM (1989) Involvement of the 'leucine zipper' region in the oligomerization and transforming activity of human c-myc protein. Nature 337:664–666CrossRefPubMedGoogle Scholar
  22. Dang CV, Li F, Lee LA (2005) Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability? Cell Cycle 4:1465–1466CrossRefPubMedGoogle Scholar
  23. Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264CrossRefPubMedGoogle Scholar
  24. Dewhirst MW, Cao Y, Li CY, Moeller B (2007) Exploring the role of HIF-1 in early angiogenesis and response to radiotherapy. Radiother Oncol 83:249–255CrossRefPubMedGoogle Scholar
  25. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13:2658–2669CrossRefPubMedGoogle Scholar
  26. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology and tumor maintenance. Cancer Cell 9:425–434CrossRefPubMedGoogle Scholar
  27. Felton-Edkins ZA, Kenneth NS, Brown TR, Daly NL, Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc. Cell Cycle 2:181–184CrossRefPubMedGoogle Scholar
  28. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, Cocito A, Amati B (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129CrossRefPubMedGoogle Scholar
  29. Gallant P, Shiio Y, Cheng PF, Parkhurst SM, Eisenman RN (1996) Myc and Max homologs in Drosophila. Science 274:1523–1527CrossRefPubMedGoogle Scholar
  30. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J et al (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12:230–238CrossRefPubMedGoogle Scholar
  31. Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F, Tyner AL (2001) Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci U S A 98:4510–4515CrossRefPubMedGoogle Scholar
  32. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899CrossRefPubMedGoogle Scholar
  33. Gazit Y, Baish JW, Safabakhsh N, Leunig M, Baxter LT, Jain RK (1997) Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation 4:395–402CrossRefPubMedGoogle Scholar
  34. Gomez-Roman N, Grandori C, Eisenman RN, White RJ (2003) Direct activation of RNA polymerase III transcription by c-Myc. Nature 421:290–294CrossRefPubMedGoogle Scholar
  35. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833CrossRefPubMedGoogle Scholar
  36. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512CrossRefPubMedGoogle Scholar
  37. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811Google Scholar
  38. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC, Mateyak MK, Tam W, Kohlhuber F et al (2000) Identification of CDK4 as a target of c-MYC Proc Natl Acad Sci U S A 97:2229–2234Google Scholar
  39. Hooker CW, Hurlin PJ (2006) Of myc and mnt. J Cell Sci 119:208–216CrossRefPubMedGoogle Scholar
  40. Iritani BM, Delrow J, Grandori C, Gomez I, Klacking M, Carlos LS, Eisenman RN (2002) Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. EMBO J 21:4820–4830CrossRefPubMedGoogle Scholar
  41. Jamerson MH, Johnson MD, Dickson RB (2004) Of mice and Myc: c-Myc and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 9:27–37CrossRefPubMedGoogle Scholar
  42. Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P (1999) Drosophila myc regulates cellular growth during development. Cell 98:779–790CrossRefPubMedGoogle Scholar
  43. Kaelin WG Jr (2005) ROS: really involved in oxygen sensing. Cell Metab 1:357–358CrossRefPubMedGoogle Scholar
  44. Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW (2003) Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 101:2797–2803CrossRefPubMedGoogle Scholar
  45. Kasibhatla S, Jessen KA, Maliartchouk S, Wang JY, English NM, Drewe J, Qiu L, Archer SP, Ponce AE, Sirisoma N et al (2005) A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proc Natl Acad Sci U S A 102:12095–12100CrossRefPubMedGoogle Scholar
  46. Kato GJ, Barrett J, Villa-Garcia M, Dang CV (1990) An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 10:5914–5920PubMedGoogle Scholar
  47. Kim JW, Dang CV (2006) Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930CrossRefPubMedGoogle Scholar
  48. Kim JW, Gao P, Liu YC, Semenza GL, Dang CV (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27:7381–7393CrossRefPubMedGoogle Scholar
  49. Kim S, Li Q, Dang CV, Lee LA (2000) Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci U S A 97:11198–11202CrossRefPubMedGoogle Scholar
  50. Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL, Modrich P, Huang LE (2005) HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17:793–803CrossRefPubMedGoogle Scholar
  51. Langdon WY, Harris AW, Cory S, Adams JM (1986) The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47:11–18CrossRefPubMedGoogle Scholar
  52. Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45:485–495CrossRefPubMedGoogle Scholar
  53. Leone G, Sears R, Huang E, Rempel R, Nuckolls F, Park CH, Giangrande P, Wu L, Saavedra HI, Field SJ et al (2001) Myc requires distinct E2F activities to induce S phase and apoptosis. Mol Cell 8:105–113CrossRefPubMedGoogle Scholar
  54. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA, Kim JW, Yustein JT, Lee LA, Dang CV (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25:6225–6234CrossRefPubMedGoogle Scholar
  55. Liao DJ, Dickson RB (2000) c-Myc in breast cancer. Endocr Relat Cancer 7:143–164CrossRefPubMedGoogle Scholar
  56. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280:41928–41939CrossRefPubMedGoogle Scholar
  57. Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26:69–76CrossRefPubMedGoogle Scholar
  58. Marhin WW, Chen S, Facchini LM, Fornace AJ Jr, Penn LZ (1997) Myc represses the growth arrest gene gadd45. Oncogene 14:2825–2834CrossRefPubMedGoogle Scholar
  59. Mateyak MK, Obaya AJ, Sedivy JM (1999) c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol 19:4672–4683PubMedGoogle Scholar
  60. Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786CrossRefPubMedGoogle Scholar
  61. McArthur GA, Laherty CD, Queva C, Hurlin PJ, Loo L, James L, Grandori C, Gallant P, Shiio Y, Hokanson WC et al (1998) The Mad protein family links transcriptional repression to cell differentiation. Cold Spring Harb Symp Quant Biol 63:423–433CrossRefPubMedGoogle Scholar
  62. Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ, Rodriguez-Puebla ML (2004) Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol 24:7538–7547CrossRefPubMedGoogle Scholar
  63. Nikiforov MA, Chandriani S, O'Connell B, Petrenko O, Kotenko I, Beavis A, Sedivy JM, Cole MD (2002) A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 22:5793–5800CrossRefPubMedGoogle Scholar
  64. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843CrossRefPubMedGoogle Scholar
  65. O'Donnell KA, Yu D, Zeller KI, Kim JW, Racke F, Thomas-Tikhonenko A, Dang CV (2006) Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol 26:2373–2386CrossRefPubMedGoogle Scholar
  66. Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T, Williams E, Loo LW, Cowley SM, Yost C et al (2003) Genomic binding by the Drosophila Myc Max Mad/Mnt transcription factor network. Genes Dev 17:1101–1114CrossRefPubMedGoogle Scholar
  67. Oskarsson T, Trumpp A (2005) The Myc trilogy: lord of RNA polymerases. Nat Cell Biol 7:215–217CrossRefPubMedGoogle Scholar
  68. Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-{kappa}B signaling pathway. Blood 110:3517–3525CrossRefPubMedGoogle Scholar
  69. Pauling L, Nixon JC, Stitt F, Marcuson R, Dunham WB, Barth R, Bensch K, Herman ZS, Blaisdell BE, Tsao C et al (1985) Effect of dietary ascorbic acid on the incidence of spontaneous mammary tumors in RIII mice. Proc Natl Acad Sci U S A 82:5185–5189CrossRefPubMedGoogle Scholar
  70. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3:565–577CrossRefPubMedGoogle Scholar
  71. Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24:7435–7442CrossRefPubMedGoogle Scholar
  72. Prendergast GC, Ziff EB (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251:186–189CrossRefPubMedGoogle Scholar
  73. Prendergast GC, Lawe D, Ziff EB (1991) Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65:395–407CrossRefPubMedGoogle Scholar
  74. Schneider A, Peukert K, Eilers M, Hanel F (1997) Association of Myc with the zinc-finger protein Miz-1 defines a novel pathway for gene regulation by Myc. Curr Top Microbiol Immunol 224:137–146PubMedGoogle Scholar
  75. Schreiber-Agus N, Stein D, Chen K, Goltz JS, Stevens L, DePinho RA (1997) Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype. Proc Natl Acad Sci U S A 94:1235–1240CrossRefPubMedGoogle Scholar
  76. Sears RC, Nevins JR (2002) Signaling networks that link cell proliferation and cell fate. J Biol Chem 277:11617–11620CrossRefPubMedGoogle Scholar
  77. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732CrossRefPubMedGoogle Scholar
  78. Seo J, Chung YS, Sharma GG, Moon E, Burack WR, Pandita TK, Choi K (2005) Cdt1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene 24:8176–8186PubMedGoogle Scholar
  79. Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI (2006) The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 20:2527–2538CrossRefPubMedGoogle Scholar
  80. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663CrossRefPubMedGoogle Scholar
  81. Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G (1999) Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 274:24142–24146CrossRefPubMedGoogle Scholar
  82. Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9:1017–1029CrossRefPubMedGoogle Scholar
  83. Tatsumi M, Cohade C, Nakamoto Y, Fishman EK, Wahl RL (2005) Direct comparison of FDG PET, CT findings in patients with lymphoma: initial experience. Radiology 237:1038–1045CrossRefPubMedGoogle Scholar
  84. Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR, Bishop JM (2001) c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414:768–773CrossRefPubMedGoogle Scholar
  85. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002) c-Myc can induce DNA damage, increase reactive oxygen species and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044CrossRefPubMedGoogle Scholar
  86. Warburg O (1956) On the origin of cancer cells. Science 123:309–314CrossRefPubMedGoogle Scholar
  87. Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V, Eilers M, Leon J, Larsson LG (2003) Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22:351–360CrossRefPubMedGoogle Scholar
  88. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420CrossRefPubMedGoogle Scholar
  89. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Medicine, Cell Biology, Molecular Biology and Genetics, Oncology and PathologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations