Skip to main content

Spinal Cord

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 316 Accesses

Abstract

Radiation myelopathy (RM) is a potential late complication of radiation treatment for lung cancer. It can be avoided in nearly all cases by well-planned dose distributions. Outside of errors in treatment planning or delivery, the greatest risk of RM occurs when retreatments are necessary. The pathogenesis, diagnosis, and treatment are discussed along with other factors that are related to RM. A previously unpublished dose-response analysis for thoracic RM is presented. It shows that the thoracic cord has a higher tolerance to high-dose radiation than the cervical cord. However, in practical terms, the responses of the two different levels to low dose are indistinguishable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbatucci JS, DeLozier T, Quint R, Roussel A, Brune D (1978) Radiation myelopathy of the cervical spinal cord. Time, dose, and volume factors. Int J Radiat Oncol Biol Phys 4:239–248

    Article  Google Scholar 

  • Ang KK, Van Der Kogel AJ, Van Der Schueren E (1986) Effect of combined AZQ and radiation on the tolerance of the rat spinal cord. J Neurooncol 3:349–1346

    Article  Google Scholar 

  • Ang KK, Jiang GL, Guttenberger R, Thames HD, Stephens LC, Smith CD, Feng Y (1992) Impact of spinal cord repair kinetics on the practice of altered fractionation schedules. Radiother Oncol 25:287–294

    Article  Google Scholar 

  • Ang KK, Price RE, Stephens LC, Jiang GL, Feng Y, Schultheiss TE, Peters LJ (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464

    Article  Google Scholar 

  • Ang KK, Jiang GL, Feng Y, Stephens LC, Tucker SL, Price RE (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50(4):1013–1020. https://doi.org/10.1016/S0360-3016(01)01599-1

    Article  Google Scholar 

  • Atkins HL, Tretter P (1966) Time-dose considerations in radiation myelopathy. Acta Radiol Ther Phys Biol 5:79–94

    Article  Google Scholar 

  • Berkson J (1953) A statistically precise and relatively simple method of estimating the bioassay with quantal response, based on the logistic function. J Am Stat Assoc 48(263):565–599. https://doi.org/10.2307/2281010

    Article  MATH  Google Scholar 

  • Bloss JD, DiSaia PJ, Mannel RS, Hyden EC, Manetta A, Walker JL, Berman ML (1991) Radiation myelitis: a complication of concurrent cisplatin and 5-fluorouracil chemotherapy with extended field radiotherapy for carcinoma of the uterine cervix. Gynecol Oncol 43(3):305–307. https://doi.org/10.1016/0090-8258(91)90041-3

    Article  Google Scholar 

  • Bradley WG, Fewings JD, Cumming WJK, Harrison RM (1977) Delayed myeloradiculopathy produced by spinal X-irradiation in the rat. J Neurol Sci 31(1):63–82. https://doi.org/10.1016/0022-510X(77)90006-5

    Article  Google Scholar 

  • Chamberlain MC, Eaton KD, Fink J (2011) Radiation-induced myelopathy: treatment with bevacizumab. Arch Neurol 68(12):1608–1609. https://doi.org/10.1001/archneurol.2011.621

    Article  Google Scholar 

  • Coy P, Dolman CL (1971) Radiation myelopathy in relation to oxygen level. Br J Radiol 44:705–707

    Article  Google Scholar 

  • Debus J, Hug EB, Liebsch NJ, O’Farrel D, Finkelstein D, Efird J, Munzenrider JE (1997) Brainstem tolerance to conformal radiotherapy of skull base tumors. Int J Radiat Oncol Biol Phys 39(5):967–975

    Article  Google Scholar 

  • Dische S, Martin WMC, Anderson P (1981) Radiation myelopathy in patients treated for carcinoma of bronchus using a six fraction regime of radiotherapy. Br J Radiol 54(637):29–35. https://doi.org/10.1259/0007-1285-54-637-29

    Article  Google Scholar 

  • Dische S, Saunders MI (1989) Continuous, hyperfractionated, accelerated radiotherapy (CHART): an interim report upon late morbidity. Radiother Oncol 16(1):65–72. https://doi.org/10.1016/0167-8140(89)90071-6

  • Dische S, Saunders MI, Warburton MF (1986) Hemoglobin, radiation, morbidity and survival. Int J Radiat Oncol Biol Phys 12(8):1335–1337

    Article  Google Scholar 

  • Dische S, Warburton MF, Saunders MI (1988) Radiation myelitis and survival in the radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 15(1):75–81. https://doi.org/10.1016/0360-3016(88)90349-5

    Article  Google Scholar 

  • Eichhorn HJ, Lessel A, Rotte KH (1972) Einfuss verschiedener Bestrahlungsrhythmen auf Tumor-und Normalgewebe in vivo. Strahlentheraphie 146:614–629

    Google Scholar 

  • Fitzgerald RH Jr, Marks RD Jr, Wallace KM (1982) Chronic radiation myelitis. Radiology 144(3):609–612. https://doi.org/10.1148/radiology.144.3.6808557

    Article  Google Scholar 

  • Hatlevoll R, Høst H, Kaalhus O (1983) Myelopathy following radiotherapy of bronchial carcinoma with large single fractions: a retrospective study. Int J Radiat Oncol Biol Phys 9(1):41–44. https://doi.org/10.1016/0360-3016(83)90206-7

    Article  Google Scholar 

  • Hopewell JW (1979) Late radiation damage to the central nervous system: a radiobiological interpretation. Neuropathol Appl Neurobiol 5:329–343

    Article  Google Scholar 

  • Hopewell JW, Van Den Aardweg GJMJ (1992) Radiation myelopathy in the pig: a model for assessing volume factors for spinal cord tolerance. In: Fortieth annual meeting of the Radiation Research Society, Salt Lake City, p 7

    Google Scholar 

  • Hopewell JW, van der Kogel AJ (1999) Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. In: Wiegel T, Hinkelbein W, Brock M, Hoell T (eds) Controversies in neuro-oncology, Frontiers of radiation therapy and oncology, vol 33. Karger, Basel, pp 265–275

    Chapter  Google Scholar 

  • Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, Wiley series in probability and statistics, 3rd edn. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Jeremic B, Djuric L, Mijatovic L (1991) Incidence of radiation myelitis of the cervical spinal cord at doses of 5500 cGy or greater. Cancer 68(10):2138–2141. https://doi.org/10.1002/1097-0142(19911115)68:10<2138::AID-CNCR2820681009>3.0.CO;2-7

    Article  Google Scholar 

  • Jeremic B, Shibamoto Y, Milicic B, Acimovic L, Milisavljevic S (1998) Absence of thoracic radiation myelitis after hyperfractionated radiation therapy with and without concurrent chemotherapy for stage III nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys 40(2):343–346. https://doi.org/10.1016/S0360-3016(97)00713-X

    Article  Google Scholar 

  • Jeremic B, Shibamoto Y, Igrutinovic I (2001) Absence of cervical radiation myelitis after hyperfractionated radiation therapy with and without concurrent chemotherapy for locally advanced, unresectable, nonmetastatic squamous cell carcinoma of the head and neck. J Cancer Res Clin Oncol 127(11):687–691. https://doi.org/10.1007/s004320100269

    Article  Google Scholar 

  • Kian Ang K, Stephens LC (1994) Prevention and management of radiation myelopathy. Oncology 8(11):71–76

    Google Scholar 

  • Kim YH, Fayos JV (1981) Radiation tolerance of the cervical spinal cord. Radiology 139:473–478

    Article  Google Scholar 

  • Knowles JF (1983) The radiosensitivity of the Guinea-pig spinal cord to x-rays: the effect of retreatment at one year and the effect of age at the time of irradiation. Int J Radiat Biol 44(5):433–442. https://doi.org/10.1080/09553008314551411

    Article  Google Scholar 

  • Macbeth FR, Wheldon TE, Girling DJ, Stephens RJ, Machin D, Bleehen NM, Lamont A, Radstone DJ, Reed NS, Bolger JJ, Clark PI, Connolly CK, Hasleton PS, Hopwood P, Moghissi K, Saunders MI, Thatcher N, White RJ (1996) Radiation myelopathy: estimates of risk in 1048 patients in three randomized trials of palliative radiotherapy for non-small cell lung cancer. Clin Oncol 8(3):176–181. https://doi.org/10.1016/S0936-6555(96)80042-2

    Article  Google Scholar 

  • Marcus RB, Million RR (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys 19(1):3–8. https://doi.org/10.1016/0360-3016(90)90126-5

    Article  Google Scholar 

  • McCunniff AJ, Liang MJ (1989) Radiation tolerance of the cervical spinal cord. Int J Radiat Oncol Biol Phys 16(3):675–678. https://doi.org/10.1016/0360-3016(89)90484-7

    Article  Google Scholar 

  • Nieder C, Grosu AL, Andratschke NH, Molls M (2005) Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys 61(3):851–855. https://doi.org/10.1016/j.ijrobp.2004.06.016

    Article  Google Scholar 

  • Nieder C, Grosu AL, Andratschke NH, Molls M (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66(5):1446–1449. https://doi.org/10.1016/j.ijrobp.2006.07.1383

    Article  Google Scholar 

  • Palmer JJ (1972) Radiation myelopathy. Brain 95:109–122

    Article  Google Scholar 

  • Powers BE, Beck ER, Gillette EL, Gould DH, LeCouter RA (1992) Pathology of radiation injury to the canine spinal cord. Int J Radiat Oncol Biol Phys 23(3):539–549. https://doi.org/10.1016/0360-3016(92)90009-7

    Article  Google Scholar 

  • Psimaras D, Tafani C, Ducray F, Leclercq D, Feuvret L, Delattre JY, Ricard D (2016) Bevacizumab in late-onset radiation-induced myelopathy. Neurology 86(5):454–457. https://doi.org/10.1212/WNL.0000000000002345

    Article  Google Scholar 

  • Ruifrok ACC, Kleiboer BJ, van der Kogel AJ (1992) Fractionation sensitivity of the rat cervical spinal cord during radiation retreatment. Radiother Oncol 25(4):295–300. https://doi.org/10.1016/0167-8140(92)90250-X

    Article  Google Scholar 

  • Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, Gorgulho A, Soltys S, Gerszten PC, Ryu S, Angelov L, Gibbs I, Wong CS, Larson DA (2013) Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys 85(2):341–347. https://doi.org/10.1016/j.ijrobp.2012.05.007

    Article  Google Scholar 

  • Schultheiss TE (1994) Spinal cord radiation tolerance. Int J Radiat Oncol Biol Phys 30:735–736

    Article  Google Scholar 

  • Schultheiss TE (2008) The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 71(5):1455–1459. https://doi.org/10.1016/j.ijrobp.2007.11.075

    Article  Google Scholar 

  • Schultheiss TE, Stephens LC (1992a) Pathogenesis of radiation myelopathy: widening the circle. Int J Radiat Oncol Biol Phys 23:1089–1091

    Article  Google Scholar 

  • Schultheiss TE, Stephens LC (1992b) Permanent radiation myelopathy. Br J Radiol 65(777):737–753

    Article  Google Scholar 

  • Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10:410–415

    Article  Google Scholar 

  • Schultheiss TE, Higgins EM, El-Mahdi AM (1984) The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys 10(7):1109–1115. https://doi.org/10.1016/0360-3016(84)90184-6

    Article  Google Scholar 

  • Schultheiss TE, Stephens LC, Peters LJ (1986a) Survival in radiation myelopathy. Int J Radiat Oncol Biol Phys 12:1765–1769

    Article  Google Scholar 

  • Schultheiss TE, Thames HD, Peters LJ, Dixon DO (1986b) Effect of latency on calculated complication rates. Int J Radiat Oncol Biol Phys 12:1861–1865

    Article  Google Scholar 

  • Schultheiss TE, Stephens LC, Maor MH (1988) Analysis of the histopathology of radiation myelopathy. Int J Radiat Oncol Biol Phys 14:27–32

    Article  Google Scholar 

  • Schultheiss TE, Stephens LC, Ang KK, Price RE, Peters LJ (1994) Volume effects in rhesus monkey spinal cord. Int J Radiat Oncol Biol Phys 29:67–72

    Article  Google Scholar 

  • Simpson JR, Perez CA, Phillips TL, Concannon JP, Carella RJ (1982) Large fraction radiotherapy plus misonidazole for treatment of advanced lung cancer: report of a phase I/II trial. Int J Radiat Oncol Biol Phys 8(2):303–308. https://doi.org/10.1016/0360-3016(82)90532-6

    Article  Google Scholar 

  • St. Clair WH, Arnold SM, Sloan AE, Regine WF (2003) Spinal cord and peripheral nerve injury: current management and investigations. Semin Radiat Oncol 13(3):322–332. https://doi.org/10.1016/S1053-4296(03)00025-0

    Article  Google Scholar 

  • Stephens LC, Ang KK, Schultheiss TE, Peters LJ (1989) Comparative morphology of radiation injury in the central nervous system. In: Radiation Research Society meeting proceedings, p 52

    Google Scholar 

  • Taylor JM (1990) The design of in vivo multifraction experiments to estimate the alpha-beta ratio. Radiat Res 121(1):91–97

    Article  Google Scholar 

  • Tye K, Engelhard HH, Slavin KV, Nicholas MK, Chmura SJ, Kwok Y, Ho DS, Weichselbaum RR, Koshy M (2014) An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neurooncol 117(2):321–327. https://doi.org/10.1007/s11060-014-1391-8

    Article  Google Scholar 

  • van den Aardweg GJMJ, Hopewell JW, Whitehouse EM (1995) The radiation response of the cervical spinal cord of the pig: effects of changing the irradiated volume. Int J Radiat Oncol Biol Phys 31(1):51–55

    Article  Google Scholar 

  • van den Brenk HAS, Richter W, Hurley RH (1968) Radiosensitivity of the human oxygenated cervical spinal cord based on analysis of 357 cases receiving 4 MeV X rays in hyperbaric oxygen. Br J Radiol 41(483):205–214

    Article  Google Scholar 

  • van der Kogel AJ (1977) Radiation-induced nerve root degeneration and hypertrophic neuropathy in the lumbosacral spinal cord of rats: the relation with changes in aging rats. Acta Neuropathol 39(2):139–145. https://doi.org/10.1007/BF00703320

    Article  Google Scholar 

  • van der Kogel AJ (1979) Late effects of radiation on the spinal cord. Dose-effect relationships and pathogenesis. PhD Thesis, University of Amsterdam, Amsterdam, Holland

    Google Scholar 

  • van der Kogel AJ (1980) Mechanisms of late radiation injury in the spinal cord. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press, New York

    Google Scholar 

  • van der Kogel AJ (1986) Radiation-induced damage in the central nervous system: an interpretation of target cell responses. Br J Cancer 53(Suppl. VII):207–217

    Google Scholar 

  • van der Kogel AJ (1991) Central nervous system radiation injury in small animal models. In: Gutin PH, Leigel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven Press, New York, pp 91–111

    Google Scholar 

  • van Der Kogel AJ, Barendsen GW (1974) Late effects of spinal cord irradiation with 300 kV X rays and 15 MeV neutrons. Br J Radiol 47(559):393–398. https://doi.org/10.1259/0007-1285-47-559-393

    Article  Google Scholar 

  • van der Kogel AJ, Sissingh HA (1983) Effect of misonidazole on the tolerance of the rat spinal cord to daily and multiple fractions per day of X rays. Br J Radiol 56(662):121–125. https://doi.org/10.1259/0007-1285-56-662-121

    Article  Google Scholar 

  • van der Kogel AJ, Sissingh HA (1985) Effects of intrathecal methotrexate and cytosine arabinoside on the radiation tolerance of the rat spinal cord. Radiother Oncol 4:239–251

    Article  Google Scholar 

  • White A, Hornsey S (1978) Radiation damage to the rat spinal cord: the effect of single and fractionated doses of X rays. Br J Radiol 51(607):515–523. https://doi.org/10.1259/0007-1285-51-607-515

    Article  Google Scholar 

  • Wong CS, Hao Y (1997) Long-term recovery kinetics of radiation damage in rat spinal cord. Int J Radiat Oncol Biol Phys 37(1):171–179

    Article  Google Scholar 

  • Wong CS, Minkin S, Hill RP (1993a) Re-irradiation tolerance of rat spinal cord to fractionated X-ray doses. Radiother Oncol 28(3):197–202. https://doi.org/10.1016/0167-8140(93)90058-g

    Article  Google Scholar 

  • Wong CS, Poon JK, Hill RP (1993b) Re-irradiation tolerance in the rat spinal cord: influence of level of initial damage. Radiother Oncol 26(2):132–138. https://doi.org/10.1016/0167-8140(93)90094-o

    Article  Google Scholar 

  • Wong CS, Van Dyk J, Milosevic M, Laperriere NJ (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30(3):575–581. https://doi.org/10.1016/0360-3016(92)90943-c

    Article  Google Scholar 

  • Wong CS, Van Dyk J, Simpson WJ (1991) Myelopathy following hyperfractionated accelerated radiotherapy for anaplastic thyroid carcinoma. Radiother Oncol 20(1):3–9. https://doi.org/10.1016/0167-8140(91)90105-P

  • Wong CS, Fehlings MG, Sahgal A (2015) Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord 53(8):574–580. https://doi.org/10.1038/sc.2015.43

    Article  Google Scholar 

  • Zeman W (1961) Radiosensitivities of nervous tissues. Brookhaven Symp Biol 14:176–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Schultheiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schultheiss, T.E. (2022). Spinal Cord. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2022_337

Download citation

  • DOI: https://doi.org/10.1007/174_2022_337

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics