Advertisement

Pediatric Cardiac CT

  • Laureen Sena
  • Hyun Woo Goo
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Technological developments have significantly advanced the role of CT for noninvasive imaging of the cardiovascular system in children. This chapter provides an overview of the technical considerations that are essential for performing high quality pediatric cardiac CT using the lowest possible radiation dose. The clinical utility and application of CT compared with MRI is discussed for a wide range of congenital and acquired pediatric cardiovascular diseases involving the systemic and pulmonary vasculature, coronary arteries, heart chamber morphology and function, and thoracic airways. Postoperative considerations following repair of congenital heart disease are also addressed.

Keywords

Congenital Heart Disease Inferior Vena Cava Kawasaki Disease Takayasu Arteritis Pulmonary Vein Stenosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aluquin VP, Albano SA, Chan F et al (2002) Magnetic resonance imaging in the diagnosis and follow up of Takayasu's arteritis in children. Ann Rheum Dis 61:526–529Google Scholar
  2. Babyn PS, Gahunia Hk, Massicotte P (2005) Pulmonary thromboembolism in children. Pediatr Radiol 35:258–274PubMedCrossRefGoogle Scholar
  3. Bauer RW, Frellesen C, Renker M et al (2011) Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism—correlation with D-dimer level, right heart strain and clinical outcome. Eur Radiol 21:1914–1921PubMedCrossRefGoogle Scholar
  4. Ben Saad M, Rohnean A, Sigal-Cinqualbre A et al (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39:668–676PubMedCrossRefGoogle Scholar
  5. Blachere H, Latrabe V, Montaudon M et al (2000) Pulmonary embolism revealed on helical CT angiography: comparison with ventilation-perfusion radionuclide lung scanning. AJR Am J Roentgenol 174:1041–1047PubMedCrossRefGoogle Scholar
  6. Choe YH, Han BK, Koh EM et al (2000) Takayasu’s arteritis: assessment of disease activity with contrast-enhanced MR imaging. AJR Am J Roentgenol 175:505–511PubMedCrossRefGoogle Scholar
  7. Daniels LB, Gordon JB, Burns JC (2012) Kawasaki disease: late cardiovascular sequelae. Curr Opin Cardiol 27:572–577PubMedCrossRefGoogle Scholar
  8. Deak PD, Langner O, Leil M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147PubMedCrossRefGoogle Scholar
  9. Deibler AR, Kuzo RS, Vohringer M et al (2004) Imaging of congenital coronary anomalies with multislice computed tomography. Mayo Clin Proc 79:1017–1023PubMedCrossRefGoogle Scholar
  10. Devaney EJ, Chang AC, Ohye RG et al (2006) Management of congenital and acquired pulmonary vein stenosis. Ann Thorac Surg 81:992–995PubMedCrossRefGoogle Scholar
  11. Dominquez SR, Anderson MS (2013) Advances in the treatment of Kawasaki disease. Curr Opin Pediatr 25:103–109CrossRefGoogle Scholar
  12. Donnelly LF, Frush DP (2003) Pediatric multidetector body CT. Radiol Clin North Am 41:637–655PubMedCrossRefGoogle Scholar
  13. Duan Y, Wang X, Cheng Z et al (2012) Application of prospective ECG-triggered dual-source CT coronary angiography for infants and children with coronary artery aneurysms due to Kawasaki disease. Br J Radiol 85:e1190–e1197PubMedCentralPubMedCrossRefGoogle Scholar
  14. Eichhorn JG, Long FR, Hill SL et al (2006) Assessment of in-stent stenosis in small children with congenital heart disease using multi-detector computed tomography: a validation study. Catheter Cardiovasc Interv 68:11–20PubMedCrossRefGoogle Scholar
  15. Fujiwara H, Hamashima Y (1978) Pathology of the heart in Kawasaki disease. Pediatrics 61:100–107PubMedGoogle Scholar
  16. Goo HW, Kim YH, Ko JK et al (2002) Horseshoe lung: useful angiographic and bronchographic images using multidetector-row spiral CT in two infants. Pediatr Radiol 32:529–532PubMedCrossRefGoogle Scholar
  17. Goo HW, Park IS, Ko JK at al (2003) CT of congenital heart disease: normal anatomy and typical pathologic conditions. Radiographics 23(spec no):S147–S165Google Scholar
  18. Goo HW (2004) Evaluation of the airways in patients with congenital heart disease using multislice CT. J Korean Pediatr Cardiol Soc 8:37–43Google Scholar
  19. Goo HW, Park IS, Ko JK et al (2005a) Computed tomography for the diagnosis of congenital heart disease in pediatric and adult patients. Int J Cardiovasc Imaging 21:347–365PubMedCrossRefGoogle Scholar
  20. Goo HW, Park IS, Ko JK et al (2005b) Visibility of the origin and proximal course of coronary arteries on non-ECG—gated heart CT in patients with congenital heart disease. Pediatr Radiol 35:792–798PubMedCrossRefGoogle Scholar
  21. Goo HW, Kim HJ (2006) Detection of air trapping on inspiratory and expiratory phase images obtained by 0.3 s cine CT in the lungs of free-breathing young children. AJR Am J Roentgenol 187:1019–1023PubMedCrossRefGoogle Scholar
  22. Goo HW, Park I, Ko JK et al (2006) Coronary CT angiography and MR angiography of Kawasaki disease. Pediatr Radiol 36:699–700CrossRefGoogle Scholar
  23. Goo HW, Suh DS (2006a) Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 36:344–351PubMedCrossRefGoogle Scholar
  24. Goo HW, Suh DS (2006b) The influences of tube voltage and scan direction on combined tube current modulation; a phantom study. Pediatr Radiol 36:833–840PubMedCrossRefGoogle Scholar
  25. Goo HW, Jhang WK, Kim YH et al (2008) CT findings of plastic bronchitis in children after Fontan operation. Pediatr Radiol 38:989–993PubMedCrossRefGoogle Scholar
  26. Goo HW, Seo DM, Yun TJ et al (2009) Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings. Pediatr Radiol 39:265–273PubMedCrossRefGoogle Scholar
  27. Goo HW (2010a) State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 11:4–18PubMedCentralPubMedCrossRefGoogle Scholar
  28. Goo HW (2010b) Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol 40:1536–1544PubMedCrossRefGoogle Scholar
  29. Goo HW, Yang DH (2010) Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan versus single-source non-ECG-synchronized spiral scan. Pediatr Radiol 40:1670–1680PubMedCrossRefGoogle Scholar
  30. Goo HW (2011a) Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin N Am 49:997–1010PubMedCrossRefGoogle Scholar
  31. Goo HW (2011b) Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 41:839–847PubMedCrossRefGoogle Scholar
  32. Goo HW (2011c) Haemodynamic findings on cardiac CT in children with congenital heart disease. Pediatr Radiol 41:250–261PubMedCrossRefGoogle Scholar
  33. Goo HW (2012) CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 13:1–11PubMedCentralPubMedCrossRefGoogle Scholar
  34. Greenberg SB, Bhutta ST (2008) A dual contrast injection technique for multidetector computed tomography angiography of Fontan procedures. Int J Cardiovasc Imaging 24:345–348PubMedCrossRefGoogle Scholar
  35. Greenberg SB (2012) Dynamic pulmonary CT in children. AJR Am J Roentgenol 199:435–440PubMedCrossRefGoogle Scholar
  36. Greess H, Nomayr A, Wolf H et al (2002) Dose reduction in CT examination of children by an attenuation-based online modulation of tube current (CARE Dose). Eur Radiol 12:1571–1576PubMedCrossRefGoogle Scholar
  37. Greil GF, Schoebinger M, Kuettner A et al (2006) Imaging of aortopulmonary collateral arteries with high-resolution multidetector CT. Pediatr Radiol 36:502–509PubMedCrossRefGoogle Scholar
  38. Greil GF, Seeger A, Miller S et al (2007) Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol 37:666–673PubMedCrossRefGoogle Scholar
  39. Greupner J, Zimmermann E, Grohmann A et al (2012) Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging at the reference standard. J Am Coll Cardiol 59:1897–1907PubMedCrossRefGoogle Scholar
  40. Ha HI, Seo JB, Lee SH et al (2007) Imaging of Marfan syndrome: multisystemic manifestations. Radiographics 27:989–1004PubMedCrossRefGoogle Scholar
  41. Han BK, Lindberg J, Grant K et al (2011) Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease. Am J Cardiol 107:1541–1546PubMedCrossRefGoogle Scholar
  42. Israel GM, Herlihy S, Rubinowitz AN et al (2008) Does a combination of dose modulation with fast gantry rotation time limit CT image quality? AJR Am J Roentgenol 191:140–144PubMedCrossRefGoogle Scholar
  43. Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086PubMedCrossRefGoogle Scholar
  44. Jhang WK, Park JJ, Seo DM et al (2008) Perioperative evaluation of airways in patients with arch obstruction and intracardiac defects. Ann Thorac Surg 85:1753–1758PubMedCrossRefGoogle Scholar
  45. Kalfa D, Gronier C, Ly M et al (2012) Giant aortic aneurysm in an infant with arterial tortuosity syndrome. Ann Thorac Surg 94:e51PubMedCrossRefGoogle Scholar
  46. Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRefGoogle Scholar
  47. Kalra VB, Gilbert JW, Malhotra A (2011) Loeys-Dietz syndrome: cardiovascular, neuroradiological and musculoskeletal imaging findings. Pediatr Radiol 41:1495–1504PubMedCrossRefGoogle Scholar
  48. Kato H, Sugimura T, Akagi T et al (1996) Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 94:1379–1385PubMedCrossRefGoogle Scholar
  49. Kim HJ, Goo HW, Park SH et al (2013) Left ventricle volume measured by cardiac CT in an infant with a small left ventricle: a new and accurate method in determining uni- or biventricular repair. Pediatr Radiol 42:243–246CrossRefGoogle Scholar
  50. Kim TH, Kim YM, Suh CH et al (2000) Helical CT angi- ography and three-dimensional reconstruction of total anomalous pulmonary venous connections in neonates and infants. AJR Am J Roentgenol 175:1381–1386PubMedCrossRefGoogle Scholar
  51. Kim YM, Yoo SJ, Kim TH et al (2002) Three-dimensional computed tomography in children with compression of the central airways complicating congenital heart disease. Cardiol Young 12:44–50PubMedCrossRefGoogle Scholar
  52. Kimura F, Sakai F, Sakomura Y et al (2002) Helical CT features of arrhythmogenic right ventricular cardiomyopathy. Radiographics 22:1111–1124PubMedCrossRefGoogle Scholar
  53. Konen E, Raviv-Zilka L, Cohen RA et al (2003) Congenital pulmonary venolobar syndrome: spectrum of helical CT findings with emphasis on computerized reformatting. Radiographics 23:1175–1184PubMedCrossRefGoogle Scholar
  54. Kroft LJ, Roelofs JJ, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisitions. Pediatr Radiol 40:294–300PubMedCentralPubMedCrossRefGoogle Scholar
  55. Lambert V, Sigal-Cinqualbre A, Belli E et al (2005) Preoperative and postoperative evaluation of airways compression in pediatric patients with 3-dimensional multislice computed tomographic scanning: effect on surgical management. J Thorac Cardiovasc Surg 129:1111–1118PubMedCrossRefGoogle Scholar
  56. Latson LA, Prieto LR (2007) Congenital and acquired pulmonary vein stenosis. Circulation 115:103–108PubMedCrossRefGoogle Scholar
  57. Lee CH, Goo JM, Ye HJ et al (2008) Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 28:1451–1459PubMedCrossRefGoogle Scholar
  58. Lee EY, Zucker EJ, Tsai J et al (2011) Pulmonary MDCT angiography: value of multiplanar reformatted images in detecting pulmonary embolism in children. AJR Am J Roentgenol 197:1460–1465PubMedCrossRefGoogle Scholar
  59. Lee EY, Tse SK, Zurakowski D et al (2012) Children suspected of having pulmonary embolism: multidetector CT pulmonary angiography-thromboembolic risk factors and implications for appropriate use. Radiology 262:242–251PubMedCrossRefGoogle Scholar
  60. Lee JR, Kwak JG, Ban JE et al (2006) Analysis of the causes of and risk factors for mortality in the surgical repair of interrupted aortic arch. Korean J Thorac Cardiovasc Surg 39:99–105Google Scholar
  61. Litmanovich D, Zamboni GA, Hauser TH et al (2008) ECG-gated chest CT angiography with 64-MDCT and tri-phasic IV contrast administration regimen in patients with acute non-specific chest pain. Eur Radiol 18:308–317PubMedCrossRefGoogle Scholar
  62. Liu PS, St John Sutton MG, Litt HI (2007) Diffuse supravalvular aortic stenosis: comprehensive imaging with ECG-gated CT angiography. Int J Cardiovasc Imaging 23:269–272PubMedCrossRefGoogle Scholar
  63. Maffei E, Messalli G, Martini C et al (2012) Left and right ventricle assessment with cardiac CT: validation study versus cardiac MR. Eur Radiol 22:1041–1049PubMedCentralPubMedCrossRefGoogle Scholar
  64. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962PubMedCrossRefGoogle Scholar
  65. McCollough CH, Primak AN, Saba O et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243:775–784PubMedCrossRefGoogle Scholar
  66. McElhinney DB, Reddy VM, Pian MS et al. (1999a) Compression of the central airways by a dilated aorta in infants and children with congenital heart disease. Ann Thorac Surg 67:1130–1136Google Scholar
  67. McElhinney DB, Tworetzky W, Hanley FL et al (1999b) Congenital obstructive lesions of the right aortic arch. Ann Thorac Surg 67:1194–1202Google Scholar
  68. McMahon MA, Squirrell CA (2010) Multidetector CT of aortic dissection: a pictorial review. Radiographics 30:445–460PubMedCrossRefGoogle Scholar
  69. Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236:565–571PubMedCrossRefGoogle Scholar
  70. Nie P, Wang X, Cheng Z et al (2012) Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congenital heart disease. Eur Radiol 22:2057–2066PubMedCrossRefGoogle Scholar
  71. Ou P, Marini D, Celermajer DS et al (2009) Non-invasive assessment of congenital pulmonary vein stenosis in children using cardiac-non-gated CT with 64-slice technology. Eur J Radiol 70:595–599PubMedCrossRefGoogle Scholar
  72. Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368PubMedCrossRefGoogle Scholar
  73. PIOPED Investigators (1990) Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). Jama 263:2753–2759CrossRefGoogle Scholar
  74. Prabhu SP, Mahmood S, Sena L et al (2009) MDCT evaluation of pulmonary embolism in children and young adults following a lateral tunnel Fontan procedure: optimizing contrast-enhancement techniques. Pediatr Radiol 39:938–944PubMedCrossRefGoogle Scholar
  75. Sato Y, Kato M, Inoue F et al (2003) Detection of coronary artery aneurysms, stenoses and occlusions by multislice spiral computed tomography in adolescents with kawasaki disease. Circ J 67:427–430PubMedCrossRefGoogle Scholar
  76. Satomi G, Nakamura K, Narai S et al (1984) Systematic visualization of coronary arteries by two-dimensional echocardiography in children and infants: evaluation in Kawasaki’s disease and coronary arteriovenous FIstulas. Am Heart J 107:497–505PubMedCrossRefGoogle Scholar
  77. Scott DJ, Campbell DN, Clarke DR et al (2009) Twenty-year surgical experience with congenital supravalvular aortic stenosis. Ann Thorac Surg 87:1501–1507PubMedCrossRefGoogle Scholar
  78. Tacke CE, Kuipers IM, Groenink M et al (2011) Cardiac magnetic resonance imaging for noninvasive assessment of cardiovascular disease during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imaging 4:712–720PubMedCrossRefGoogle Scholar
  79. Tandri H, Bomma C, Calkins H et al (2004) Magnetic resonance and computed tomography imaging of arrhythmogenic right ventricular dysplasia. J Magn Reson Imaging 19:848–858PubMedGoogle Scholar
  80. Tangcharoen T, Bell A, Hegde S et al (2011) Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology 259:240–247PubMedCrossRefGoogle Scholar
  81. Taragin BH, Berdon WE, Printz B (2006) MRI assessment of bronchial compression in absent pulmonary valve syndrome and review of the syndrome. Pediatr Radiol 36:71–75PubMedCrossRefGoogle Scholar
  82. Tsai IC, Lee T, Chen MC et al (2007) Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 37:818–825PubMedCrossRefGoogle Scholar
  83. Tsai WL, Wei HJ, Tsai IC (2010) High-take-off coronary artery: a haemodynamically minor, but surgically important c adoronary anomaly. Pediatr Radiol 40:232–233PubMedCrossRefGoogle Scholar
  84. Tzedakis A, Damilakis J, Perisinakis K et al (2007) Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 34:1163–1175PubMedCrossRefGoogle Scholar
  85. Westra SJ, Hill JA, Alejos JC et al (1999) Three-dimensional helical CT of pulmonary arteries in infants and children with congenital heart disease. AJR Am J Roentgenol 173:109–115PubMedCrossRefGoogle Scholar
  86. Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798PubMedCrossRefGoogle Scholar
  87. Yang DH, Goo HW (2008) Pediatric 16-slice CT protocols: radiation dose and image quality. J Korean Radiol Soc 59:333–347Google Scholar
  88. Yang DH, Goo HW, Seo DM et al (2008) Multislice CT angiography of interrupted aortic arch. Pediatr Radiol 38:89–100PubMedCrossRefGoogle Scholar
  89. Yu L, Bruesewitz MR, Thomas KB et al (2011) Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics 31:835–848PubMedCrossRefGoogle Scholar
  90. Zhang LJ, Wang ZJ, Zhou CS et al (2012) Evaluation of pulmonary embolism in pediatric patients with nephrotic syndrome with dual energy CT pulmonary angiography. Acad Radiol 19:341–348PubMedCrossRefGoogle Scholar
  91. Zhu FP, Luo S, Wang ZJ et al (2012) Takayasu arteritis: imaging spectrum at multidetector CT angiography. Br J Radiol 85:e1282–e1292PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of RadiologyBoston Children’s HospitalBostonUSA
  2. 2.Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulKorea

Personalised recommendations