Advertisement

High-Resolution Imaging

  • Janina M. Patsch
  • Jan S. Bauer
Part of the Medical Radiology book series (MEDRAD)

Abstract

In the last two decades, high-resolution imaging of the skeleton has emerged as a growing field of research. Techniques such as high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI) provide noninvasive access to bone microarchitecture, an important determinant of bone quality. High-resolution images can be processed by a multitude of techniques such as compartment-specific morphometric analyses including the quantification of cortical porosity, finite element analyses (FEA), decomposition techniques, and texture analysis.

Keywords

Bone Mineral Density Bone Microarchitecture Trabecular Bone Volume Cortical Porosity Bone Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alonso CG, Curiel MD et al (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 11(8):714–720CrossRefGoogle Scholar
  2. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 14(Suppl 3):13–18Google Scholar
  3. Anonymous (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795 Google Scholar
  4. Anumula S, Wehrli SL et al (2010) Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone 46(5):1391–1399PubMedCrossRefGoogle Scholar
  5. Bae WC, Chen PC et al (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res Off J Am Soc Bone Miner Res 27(4):848–857CrossRefGoogle Scholar
  6. Bauer JS, Link TM (2009) Advances in osteoporosis imaging. Eur J Radiol 71(3):440–449PubMedCrossRefGoogle Scholar
  7. Bauer JS, Link TM et al (2007) Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcif Tissue Int 80(6):366–373PubMedCrossRefGoogle Scholar
  8. Bauer JS, Monetti R et al (2009) Advances of 3T MR imaging in visualizing trabecular bone structure of the calcaneus are partially SNR-independent: analysis using simulated noise in relation to micro-CT, 1.5T MRI, and biomechanical strength. J Magn Reson Imaging 29(1):132–140PubMedCrossRefGoogle Scholar
  9. Baum T, Dütsch Y et al (2012) Reproducibility of trabecular bone structure measurements of the distal radius at 1.5 and 3.0 T magnetic resonance imaging. J Comput Assist Tomogr 36(5):623–626 Google Scholar
  10. Beck TJ, Ruff CB et al (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25(1):6–18PubMedCrossRefGoogle Scholar
  11. Benazzi S, Douka K et al (2011) Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479(7374):525–528PubMedCrossRefGoogle Scholar
  12. Benito M, Gomberg B et al (2003) Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 88(4):1497–1502PubMedCrossRefGoogle Scholar
  13. Benito M, Vasilic B et al (2005) Effect of testosterone replacement on trabecular architecture in hypogonadal men. J Bone Miner Res Off J Am Soc Bone Miner Res 20(10):1785–1791CrossRefGoogle Scholar
  14. Biswas R, Bae W et al (2012) Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 50(3):749–755PubMedCrossRefGoogle Scholar
  15. Boivin GY, Chavassieux PM et al (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27(5):687–694PubMedCrossRefGoogle Scholar
  16. Boutroy S, Bouxsein ML et al (2005) In vivo assessment of trabecular bone micro architecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinolo Metab 90(12):6508–6515CrossRefGoogle Scholar
  17. Boutroy S, Van Rietbergen B et al (2008) Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 23(3):392–399CrossRefGoogle Scholar
  18. Boutry N, Cortet B et al (2003) Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 227(3):708–717PubMedCrossRefGoogle Scholar
  19. Bouxsein ML, Boyd SK et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res Off J Am Soc Bone Miner Res 25(7):1468–1486CrossRefGoogle Scholar
  20. Burghardt AJ, Buie HR et al (2010a) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528CrossRefGoogle Scholar
  21. Burghardt AJ, Issever AS et al (2010b) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055CrossRefGoogle Scholar
  22. Burghardt AJ, Kazakia GJ et al (2010c) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25(5):983–993Google Scholar
  23. Burghardt AJ, Kazakia GJ et al (2010d) A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res 25(12):2282–2295CrossRefGoogle Scholar
  24. Burghardt AJ, Pialat JB, Kazakia GJ, Boutroy S, Engelke K, Patsch JM, Valentinitsch A, Liu D, Szabo E, Bogado CE, Zanchetta MB, McKay HA, Shane E, Boyd SK, Bouxsein ML, Chapurlat R, Khosla S, Majumdar S. (2012) Multi-center precision of cortical and trabecular bone quality measures assessed by HR-PQCT. J Bone Miner Res. doi: 10.1002/jbmr.1795. [Epub ahead of print]
  25. Chesnut CH 3rd, Majumdar S et al (2005) Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res Off J Am Soc Bone Miner Res 20(9):1548–1561CrossRefGoogle Scholar
  26. Chevalier Y, Quek E et al (2010) Biomechanical effects of teriparatide in women with osteoporosis treated previously with alendronate and risedronate: results from quantitative computed tomography-based finite element analysis of the vertebral body. Bone 46(1):41–48PubMedCrossRefGoogle Scholar
  27. Cohen A, Dempster DW et al (2010) Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 21(2):263–273CrossRefGoogle Scholar
  28. Cortet B, Boutry N et al (2000) In vivo comparison between computed tomography and magnetic resonance image analysis of the distal radius in the assessment of osteoporosis. J Clin Densitom Off J Int Soc Clin Densitom 3(1):15–26CrossRefGoogle Scholar
  29. Damilakis J, Adams JE et al (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20(11):2707–2714PubMedCrossRefGoogle Scholar
  30. Du J, Bydder M et al (2011) Short T2 contrast with three-dimensional ultrashort echo time imaging. Magn Reson Imaging 29(4):470–482PubMedCrossRefGoogle Scholar
  31. Eswaran SK, Fields AJ et al (2009) Multi-scale modeling of the human vertebral body: comparison of micro-CT based high-resolution and continuum-level models. In: Pacific symposium on biocomputing, pp 293–303Google Scholar
  32. Folkesson J, Goldenstein J et al (2011) Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women. Bone 48(3):611–621PubMedCrossRefGoogle Scholar
  33. Genant HK, Engelke K et al (2010) Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone mineral density. Bone 47(1):131–139PubMedCrossRefGoogle Scholar
  34. Gnudi S, Malavolta N et al (2004) Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J Radiol 77(915):219–223PubMedCrossRefGoogle Scholar
  35. Gomberg BR, Wehrli FW et al (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35(1):266–276PubMedCrossRefGoogle Scholar
  36. Gomberg BR, Saha PK et al (2005) Method for cortical bone structural analysis from magnetic resonance images. Acad Radiol 12(10):1320–1332CrossRefGoogle Scholar
  37. Graeff C, Timm W et al (2007) Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res Off J Am Soc Bone Miner Res 22(9):1426–1433CrossRefGoogle Scholar
  38. Griffith JF, Yeung DK et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236(3):945–951PubMedCrossRefGoogle Scholar
  39. Griffith JF, Yeung DK et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241(3):831–838PubMedCrossRefGoogle Scholar
  40. Griffith JF, Yeung DK et al (2008) Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 23(7):1068–1075CrossRefGoogle Scholar
  41. Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc (Oxford) 185:67–75CrossRefGoogle Scholar
  42. Hildebrand T, Laib A et al (1999) Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174PubMedCrossRefGoogle Scholar
  43. Holzer G, von Skrbensky G et al (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res Off J Am Soc Bone Miner Res 24(3):468–474CrossRefGoogle Scholar
  44. Hwang SN, Wehrli FW et al (1997) Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 24(8):1255–1261PubMedCrossRefGoogle Scholar
  45. Ito M (2011) Recent progress in bone imaging for osteoporosis research. J Bone Miner Metab 29(2):131–140PubMedCrossRefGoogle Scholar
  46. Ito M, Ikeda K et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res Off J Am Soc Bone Miner Res 20(10):1828–1836CrossRefGoogle Scholar
  47. Jayakar RY, Cabal A et al (2012) Evaluation of high-resolution peripheral quantitative computed tomography, finite element analysis and biomechanical testing in a pre-clinical model of osteoporosis: a study with odanacatib treatment in the ovariectomized adult rhesus monkey. Bone 50(6):1379–1388PubMedCrossRefGoogle Scholar
  48. Kazakia GJ, Hyun B et al (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23(4):463–474PubMedCrossRefGoogle Scholar
  49. Keaveny TM, McClung MR et al (2012) Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone 50(1):165–170PubMedCrossRefGoogle Scholar
  50. Keyak JH, Sigurdsson S et al (2011) Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48(6):1239–1245PubMedCrossRefGoogle Scholar
  51. Khosla S, Riggs BL et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res Off J Am Soc Bone Miner Res 21(1):124–131CrossRefGoogle Scholar
  52. Krug R, Banerjee S et al (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 16(11):1307–1314CrossRefGoogle Scholar
  53. Krug R, Han ET et al (2006) Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med Off J Soc Magn Reson Med/Soc Magn Reso Med 56(5):1033–1040Google Scholar
  54. Krug R, Larson PE et al (2011) Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study. J Magn Reson Imaging 34(3):691–695PubMedCrossRefGoogle Scholar
  55. Ladinsky GA, Vasilic B et al (2008) Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res Off J Am Soc Bone Miner Res 23(1):64–74CrossRefGoogle Scholar
  56. Laib A, Hauselmann HJ et al (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care Off J Eur Soc Eng Med 6(5–6):329–337Google Scholar
  57. Laib A, Newitt DC et al (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(2):130–136CrossRefGoogle Scholar
  58. Li EK, Zhu TY et al (2010) Ibandronate increases cortical bone density in patients with systemic lupus erythematosus on long-term glucocorticoid. Arthritis Res Ther 12(5):R198PubMedCrossRefGoogle Scholar
  59. Link TM (2002) High-resolution magnetic resonance imaging to assess trabecular bone structure in patients after transplantation: a review. Top Magn Reson Imaging 13(5):365–375PubMedCrossRefGoogle Scholar
  60. Link TM, Majumdar S et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res Off J Am Soc Bone Miner Res 13(7):1175–1182CrossRefGoogle Scholar
  61. Link TM, Lotter A et al (2000) Changes in calcaneal trabecular bone structure after heart transplantation: an MR imaging study. Radiology 217(3):855–862PubMedGoogle Scholar
  62. Link TM, Saborowski K   et al (2002) Changes in calcaneal trabecular bone structure assessed with high-resolution MR imaging in patients with kidney transplantation. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(2):119–129Google Scholar
  63. Link TM, Bauer J et al (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39(8):487–497PubMedCrossRefGoogle Scholar
  64. Liu XS, Cohen A et al (2010a) Individual trabeculae segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 25(7):1496–1505CrossRefGoogle Scholar
  65. Liu XS, Cohen A et al (2010b) Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 25(10):2229–2238CrossRefGoogle Scholar
  66. Liu XS, Zhang XH et al (2010c) High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res Off J Am Soc Bone Miner Res 25(4):746–756Google Scholar
  67. Liu XS, Walker MD et al (2011) Better skeletal microstructure confers greater mechanical advantages in Chinese-American women versus white women. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 26(8):1783–1792Google Scholar
  68. Louis O, Cattrysse E et al (2010) Accuracy of peripheral quantitative computed tomography and magnetic resonance imaging in assessing cortical bone cross-sectional area: a cadaver study. J Comput Assist Tomogr 34(3):469–472PubMedCrossRefGoogle Scholar
  69. Macdonald HM, Nishiyama KK et al (2011a) Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int 22(1):357–362CrossRefGoogle Scholar
  70. Macdonald HM, Nishiyama KK et al (2011b) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res Off J Am Soc Bone Miner Res 26(1):50–62CrossRefGoogle Scholar
  71. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105PubMedCrossRefGoogle Scholar
  72. Majumdar S, Newitt D et al (1995) Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. Bone 17(4):417–430PubMedCrossRefGoogle Scholar
  73. Majumdar S, Newitt D et al (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 6(5):376–385CrossRefGoogle Scholar
  74. Majumdar S, Link TM et al (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 10(3):231–239CrossRefGoogle Scholar
  75. Monetti RA, Boehm H et al (2005) Structural analysis of human proximal femur for the prediction of biomechanical strength in vitro: the locally adapted scaling vector method. In: Fitzpatrick JM, Reinhardt JM (eds) Proceedings of the SPIE medical imaging 2005: Image processing, vol 5747, pp 231–239Google Scholar
  76. Monetti R, Bauer J et al (2011) The locally adapted scaling vector method: a new tool for quantifying anisotropic structures in bone images. In: Saba L (ed) Computed tomography—special applications. InTech. http://www.intechopen.com/articles/show/title/the-locally-adapted-scaling-vector-method-a-new-tool-for-quantifying-anisotropic-structures-in-bone-
  77. Mueller D, Link TM et al (2006) The 3D-based scaling index algorithm: a new structure measure to analyze trabecular bone architecture in high-resolution MR images in vivo. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 17(10):1483–1493CrossRefGoogle Scholar
  78. Mulder L, van Rietbergen B et al (2012) Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach. Bone 50(1):200–208PubMedCrossRefGoogle Scholar
  79. Muller R (2002) The Zurich experience: one decade of three-dimensional high-resolution computed tomography. Top Magn Reson Imaging 13(5):307–322PubMedCrossRefGoogle Scholar
  80. Newitt DC, Majumdar S et al (2002a) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int J established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(1):6–17CrossRefGoogle Scholar
  81. Newitt DC, van Rietbergen B et al (2002b) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 13(4):278–287CrossRefGoogle Scholar
  82. Nishiyama KK, Macdonald HM et al (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res Off J Am Soc Bone Miner Res 25(4):882–890Google Scholar
  83. Ouyang X, Selby K et al (1997) High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements. Calcif Tissue Int 60(2):139–147PubMedCrossRefGoogle Scholar
  84. Pahr DH, Zysset PK (2009) A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J Biomech 42(4):455–462PubMedCrossRefGoogle Scholar
  85. Parfitt AM, Drezner MK et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res Off J Am Soc Bone Miner Res 2(6):595–610CrossRefGoogle Scholar
  86. Patsch JM (2012) Increased cortical porosity in type-2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. doi: 10.1002/jbmr.1763. [Epub ahead of print]
  87. Peyrin F (2011) Evaluation of bone scaffolds by micro-CT. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 22(6):2043–2048CrossRefGoogle Scholar
  88. Phan CM, Matsuura M et al (2006) Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 239(2):488–496PubMedCrossRefGoogle Scholar
  89. Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50(1):111–118Google Scholar
  90. Pialat JB, Vilayphiou N et al (2012) Local topological analysis at the distal radius by HR-pQCT: application to in vivo bone microarchitecture and fracture assessment in the OFELY study. Bone 51(3):362–368PubMedCrossRefGoogle Scholar
  91. Pothuaud L, Laib A et al (2002) Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-microm-resolution microcomputed tomography. J Bone Miner Res Off J Am Soc Bone Miner Res 17(10):1883–1895CrossRefGoogle Scholar
  92. Pothuaud L, Newitt DC et al (2004) In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 15(5):411–419CrossRefGoogle Scholar
  93. Rad HS, Lam SC et al (2011) Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI. NMR Biomed 24(7):855–864PubMedCrossRefGoogle Scholar
  94. Rajapakse CS, Leonard MB et al (2012) Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 262(3):912–920PubMedCrossRefGoogle Scholar
  95. Räth C, Monetti R et al (2008) Strength through structure: visualization and local assessment of the trabecular bone structure. New J Phys 10(12): 125010 (122008)Google Scholar
  96. Reichert IL, Robson MD et al (2005) Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 23(5):611–618PubMedCrossRefGoogle Scholar
  97. Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, Boutroy S, Laib A, Bock O (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis: results of a 2-year study. Osteoporos Int 23(1):305–315Google Scholar
  98. Roschger P, Manjubala I et al (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res Off J Am Soc Bone Miner Res 25(4):891–900Google Scholar
  99. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35–43PubMedCrossRefGoogle Scholar
  100. Schellinger D, Lin CS et al (2004) Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. Am J Roentgenol 183(6):1761–1765CrossRefGoogle Scholar
  101. Seeman E (2010) Bone morphology in response to alendronate as seen by high-resolution computed tomography: through a glass darkly. J Bone Miner Res 25(12):2277–2281CrossRefGoogle Scholar
  102. Seeman E, Delmas PD et al (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25(8):1886–1894PubMedCrossRefGoogle Scholar
  103. Shen W, Chen J et al (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int J Established Result Cooper Eur Found Osteoporos Natl Osteoporos Found USA 18(5):641–647CrossRefGoogle Scholar
  104. Sidorenko I, Monetti R et al (2011) Assessing methods for characterising local and global structural and biomechanical properties of the trabecular bone network. Curr Med Chem 18(22):3402–3409PubMedCrossRefGoogle Scholar
  105. Sievanen H, Karstila T et al (2007) Magnetic resonance imaging of the femoral neck cortex. Acta Radiol 48(3):308–314PubMedCrossRefGoogle Scholar
  106. Sornay-Rendu E, Boutroy S et al (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–433PubMedCrossRefGoogle Scholar
  107. Sornay-Rendu E, Cabrera-Bravo JL et al (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24(4):737–743PubMedCrossRefGoogle Scholar
  108. Stauber M, Muller R (2006) Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry. Bone 38(4):475–484PubMedCrossRefGoogle Scholar
  109. Stein EM, Liu XS et al (2010) Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res Off J Am Soc Bone Miner Res 25(12):2572–2581CrossRefGoogle Scholar
  110. Stein EM, Liu XS et al (2011) Abnormal microarchitecture and stiffness in postmenopausal women with ankle fractures. J Clin Endocrinol Metab 96(7):2041–2048PubMedCrossRefGoogle Scholar
  111. Techawiboonwong A, Song HK et al (2005) Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging 22(5):647–655PubMedCrossRefGoogle Scholar
  112. Trabelsi N, Yosibash Z et al (2011) Patient-specific finite element analysis of the human femur–a double-blinded biomechanical validation. J Biomech 44(9):1666–1672PubMedCrossRefGoogle Scholar
  113. Valentinitsch A, Patsch JM et al (2012) Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans. BoneGoogle Scholar
  114. van Rietbergen B, Majumdar S et al (2002) High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech 17(2):81–88CrossRefGoogle Scholar
  115. Vico L, Zouch M et al (2008) High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res 23(11):1741–1750PubMedCrossRefGoogle Scholar
  116. Vilayphiou N, Boutroy S et al (2010) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone 46(4):1030–1037PubMedCrossRefGoogle Scholar
  117. Vilayphiou N, Boutroy S et al (2011) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–973PubMedCrossRefGoogle Scholar
  118. Walsh CJ, Phan CM et al (2010) Women with anorexia nervosa: finite element and trabecular structure analysis by using flat-panel volume CT. Radiology 257(1):167–174PubMedCrossRefGoogle Scholar
  119. Wang XF, Wang Q et al (2009) Differences in macro- and microarchitecture of the appendicular skeleton in young Chinese and white women. J Bone Miner Res Off J Am Soc Bone Miner Res 24(12):1946–1952CrossRefGoogle Scholar
  120. Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 25(2):390–409PubMedCrossRefGoogle Scholar
  121. Wehrli FW, Gomberg BR et al (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 16(8):1520–1531CrossRefGoogle Scholar
  122. Wehrli FW, Leonard MB et al (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20(1):83–89PubMedCrossRefGoogle Scholar
  123. Wehrli FW, Ladinsky GA et al (2008) In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res Off J Am Soc Bone Miner Res 23(5):730–740CrossRefGoogle Scholar
  124. Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101(Part 2):153–168PubMedCrossRefGoogle Scholar
  125. Woodhead HJ, Kemp AF et al (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res Off J Am Soc Bone Miner Res 16(12):2251–2259CrossRefGoogle Scholar
  126. Zebaze RM, Ghasem-Zadeh A et al (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of RadiologyTechnische Universität MünchenMunichGermany

Personalised recommendations