Skip to main content

Fetal MRI of Normal Brain Development

  • Chapter
  • First Online:
Fetal MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2793 Accesses

Abstract

The fetal brain is substantially different from the neonatal brain in terms of its structure and connectivity. Fetal MRI, beginning at 16–18 GW (gestational weeks), can be used to study fetal brain development and maturation in vivo. T2-weighted (T2W), T1-weighted (T1W), and diffusion-weighted (DW) imaging sequences can be used primarily to demonstrate morphology, parenchymal lamination, sulcation and gyration, the width of the subarachnoid spaces, and the size and shape of the midline structures. It is essential to understand MR signal changes associated with maturation, including the appearance and disappearance of transient structures, the underlying histological ­development of the fetal brain as well as the timing of development of landmarks in maturation in order to interpret normal and abnormal findings. It is the basis for understanding how neurogenetic development can be disrupted during vulnerable periods by different pathological processes, and how genetically controlled events in development correlate with functional development. The maturational stages of the fetal cerebral cortex, white matter, temporal lobe, and cerebellum, including structures that appear transiently in the developing brain as shown by various MR sequences, will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham H, Tornoczky T et al (2001) Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci 19(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Adamsbaum C, Moutard ML et al (2005) MRI of the fetal posterior fossa. Pediatr Radiol 35(2):124–140

    Article  PubMed  Google Scholar 

  • Alagappan R, Browning PD et al (1994) Distal lateral ventricular atrium: reevaluation of normal range. Radiology 193(2):405–408

    PubMed  CAS  Google Scholar 

  • Anjari M, Srinivasan L et al (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 35(3):1021–1027

    Article  PubMed  Google Scholar 

  • Arber S (2004) Subplate neurons: bridging the gap to function in the cortex. Trends Neurosci 27(3):111–113

    Article  PubMed  CAS  Google Scholar 

  • Arnold SE, Trojanowski JQ (1996) Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 367(2):274–292

    Article  PubMed  CAS  Google Scholar 

  • Back SA, Luo NL et al (2002) Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol 61(2):197–211

    PubMed  Google Scholar 

  • Ballabh P, Braun A et al (2004) Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 56(1):117–124

    Article  PubMed  Google Scholar 

  • Barkovich AJ, Kjos BO et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166(1 Pt 1):173–180

    PubMed  CAS  Google Scholar 

  • Basson MA, Echevarria D et al (2008) Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development 135(5):889–898

    Article  PubMed  CAS  Google Scholar 

  • Battin M., Rutherford MA, (2001). MRI of the Fetal Brain. MA, Rutherford, Saunders Ltd.: 36–45

    Google Scholar 

  • Battin MR, Maalouf EF et al (1998) Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics 101(6):957–962

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Khalilov I et al (2004) Interneurons set the tune of developing networks. Trends Neurosci 27(7):422–427

    Article  PubMed  CAS  Google Scholar 

  • Berman JI, Mukherjee P et al (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27(4):862–871

    Article  PubMed  Google Scholar 

  • Brazel CY, Romanko MJ et al (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69(1):49–69

    Article  PubMed  Google Scholar 

  • Brisse H, Fallet C et al (1997) Supratentorial parenchyma in the developing fetal brain: in vitro MR study with histologic comparison. AJNR Am J Neuroradiol 18(8):1491–1497

    PubMed  CAS  Google Scholar 

  • Bronen RA, Cheung G (1991) MRI of the temporal lobe: normal variations, with special reference toward epilepsy. Magn Reson Imaging 9(4):501–507

    Article  PubMed  CAS  Google Scholar 

  • Brugger PC, Stuhr F et al (2006) Methods of fetal MR: beyond T2-weighted imaging. Eur J Radiol 57(2):172–181

    Article  PubMed  Google Scholar 

  • Bui T, Daire JL et al (2006) Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatr Radiol 36(11):1133–1140

    Article  PubMed  Google Scholar 

  • Bystron I, Rakic P et al (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9(7):880–886

    Article  PubMed  CAS  Google Scholar 

  • Bystron I, Blakemore C et al (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9(2):110–122

    Article  PubMed  CAS  Google Scholar 

  • Cardoza GR, Goldstein RB, Filly RA (1988) Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169(3):711–714

    PubMed  CAS  Google Scholar 

  • Chi JG, Dooling EC et al (1977) Gyral development of the human brain. Ann Neurol 1(1):86–93

    Article  PubMed  CAS  Google Scholar 

  • Childs AM, Ramenghi LA et al (2001) Cerebral maturation in premature infants: quantitative assessment using MR imaging. AJNR Am J Neuroradiol 22(8):1577–1582

    PubMed  CAS  Google Scholar 

  • Chong BW, Babcook CJ et al (1996) A magnetic resonance template for normal neuronal migration in the fetus. Neurosurgery 39(1):110–116

    Article  PubMed  CAS  Google Scholar 

  • Chong BW, Babcook CJ et al (1997) A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery 41(4):924–928, discussion 928-9

    Article  PubMed  CAS  Google Scholar 

  • Chung R, Kasprian G et al (2009) The current state and future of fetal imaging. Clin Perinatol 36(3):685–699

    Article  PubMed  Google Scholar 

  • Coleman KA, Mitrofanis J (1999) Does the perireticular thalamic nucleus project to the neocortex? Anat Embryol (Berl) 200(5):521–531

    Article  CAS  Google Scholar 

  • Corbin JG, Nery S et al (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Counsell SJ, Maalouf EF et al (2002) MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 23(5):872–881

    PubMed  Google Scholar 

  • Daffos F, Forestier F et al (1988) Fetal curarization for prenatal magnetic resonance imaging. Prenat Diagn 8(4):312–314

    Article  PubMed  CAS  Google Scholar 

  • Del Rio JA, Martinez A et al (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 10(8):784–801

    Article  PubMed  Google Scholar 

  • Dorovini-Zis K, Dolman CL (1977) Gestational development of brain. Arch Pathol Lab Med 101(4):192–195

    PubMed  CAS  Google Scholar 

  • Dubois J, Benders M et al (2008) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18(6):1444–1454

    Article  PubMed  CAS  Google Scholar 

  • Earle KL, Mitrofanis J (1996) Genesis and fate of the perireticular thalamic nucleus during early development. J Comp Neurol 367(2):246–263

    Article  PubMed  CAS  Google Scholar 

  • Eyre JA, Miller S et al (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123(Pt 1):51–64

    Article  PubMed  Google Scholar 

  • Farrell TA, Hertzberg BS et al (1994) Fetal lateral ventricles: reassessment of normal values for atrial diameter at US. Radiology 193(2):409–411

    PubMed  CAS  Google Scholar 

  • Fields RD (2004) Volume transmission in activity-dependent regulation of myelinating glia. Neurochem Int 45(4):503–509

    Article  PubMed  CAS  Google Scholar 

  • Filly RA, Goldstein RB (1994) The fetal ventricular atrium: fourth down and 10 mm to go. Radiology 193(2):315–317

    PubMed  CAS  Google Scholar 

  • Fischl B, Rajendran N et al (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18(8):1973–1980

    Article  PubMed  Google Scholar 

  • Fishell G, Mason CA et al (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362(6421):636–638

    Article  PubMed  CAS  Google Scholar 

  • Fogliarini C, Chaumoitre K et al (2005) Assessment of cortical maturation with prenatal MRI. Part I: Normal cortical maturation. Eur Radiol 15(8):1671–1685

    Article  PubMed  Google Scholar 

  • Garel C (2004) MRI of the fetal brain: normal development and cerebral pathologies. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Garel C, Alberti C (2006) Coronal measurement of the fetal lateral ventricles: comparison between ultrasonography and magnetic resonance imaging. Ultrasound Obstet Gynecol 27(1):23–27

    Article  PubMed  CAS  Google Scholar 

  • Garel C, Chantrel E et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 22(1):184–189

    PubMed  CAS  Google Scholar 

  • Garel C, Chantrel E et al (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19(7–8):422–425

    Article  PubMed  Google Scholar 

  • Garel C, Delezoide AL et al (2004) Contribution of fetal MR imaging in the evaluation of cerebral ischemic lesions. AJNR Am J Neuroradiol 25(9):1563–1568

    PubMed  Google Scholar 

  • Girard NJ, Raybaud CA (1992) In vivo MRI of fetal brain cellular migration. J Comput Assist Tomogr 16(2):265–267

    Article  PubMed  CAS  Google Scholar 

  • Girard N, Raybaud C et al (1991) MRI study of brain myelination. J Neuroradiol 18(4):291–307

    PubMed  CAS  Google Scholar 

  • Girard N, Raybaud C et al (1995) In vivo MR study of brain maturation in normal fetuses. AJNR Am J Neuroradiol 16(2):407–413

    PubMed  CAS  Google Scholar 

  • Glenn OA, Barkovich AJ (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol 27(8):1604–1611

    PubMed  CAS  Google Scholar 

  • Grever WE, Chiu FC et al (1996) Quantification of myelin basic protein in the human fetal spinal cord during the midtrimester of gestation. J Comp Neurol 376(2):306–314

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Hasan KM et al (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81(2):172–178

    Article  PubMed  CAS  Google Scholar 

  • Hankin MH, Silver J (1988) Development of intersecting CNS fiber tracts: the corpus callosum and its perforating fiber pathway. J Comp Neurol 272(2):177–190

    Article  PubMed  CAS  Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl) 210(5–6):411–417

    Article  Google Scholar 

  • Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32(3):989–994

    Article  PubMed  Google Scholar 

  • Huang H, Zhang J et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33(1):27–38

    Article  PubMed  Google Scholar 

  • Huang H, Xue R et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29(13):4263–4273

    Article  PubMed  CAS  Google Scholar 

  • Huppi PS, Maier SE et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44(4):584–590

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO, Patel R et al (1986) Migration of neuroblasts along preexisting axonal tracts during prenatal cerebellar development. J Neurosci 6(3):867–876

    PubMed  CAS  Google Scholar 

  • Isumi H, Mizuguchi M et al (1997) Differential development of the human cerebellar vermis: immunohistochemical and morphometrical evaluation. Brain Dev 19(4):254–257

    Article  PubMed  CAS  Google Scholar 

  • Jakovcevski I, Zecevic N (2005) Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J Neurosci 25(44):10064–10073

    Article  PubMed  CAS  Google Scholar 

  • Joseph R (2000) Fetal brain behavior and cognitive development. Dev Rev 20:81–98

    Article  Google Scholar 

  • Jovanov-Milosevic N, Culjat M et al (2009) Growth of the human corpus callosum: modular and laminar morphogenetic zones. Front Neuroanat 3:6

    Article  PubMed  CAS  Google Scholar 

  • Judas M, Rados M et al (2005) Structural, immunocytochemical, and mr imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol 26(10):2671–2684

    PubMed  Google Scholar 

  • Kasprian G (2006) Growth and development of the fetal temporal lobe in vivo. Medical University of Vienna, Vienna

    Google Scholar 

  • Kasprian G, Brugger PC et al (2008) In utero tractography of fetal white matter development. Neuroimage 43(2):213–224

    Article  PubMed  Google Scholar 

  • Kasprian G, Langs G et al (2010) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex. [Epub ahead of print]

    Google Scholar 

  • Katz MJ, Lasek RJ et al (1983) Ontophyletics of the nervous system: development of the corpus callosum and evolution of axon tracts. Proc Natl Acad Sci USA 80(19):5936–5940

    Article  PubMed  CAS  Google Scholar 

  • Khazipov R, Esclapez M et al (2001) Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21(24):9770–9781

    PubMed  CAS  Google Scholar 

  • Kier EL, Truwit CL (1996) The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 17(9):1631–1641

    PubMed  CAS  Google Scholar 

  • Kier EL, Truwit CL (1997) The lamina rostralis: modification of concepts concerning the anatomy, embryology, and MR appearance of the rostrum of the corpus callosum. AJNR Am J Neuroradiol 18(4):715–722

    PubMed  CAS  Google Scholar 

  • Kier EL, Kim JH et al (1997) Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. AJNR Am J Neuroradiol 18(3):525–532

    PubMed  CAS  Google Scholar 

  • Kinney HC (2005) Human myelination and perinatal white matter disorders. J Neurol Sci 228(2):190–192

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita Y, Okudera T et al (2001) Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. AJNR Am J Neuroradiol 22(2):382–388

    PubMed  CAS  Google Scholar 

  • Koester SE, O’Leary DD (1994) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14(11 Pt 1):6608–6620

    PubMed  CAS  Google Scholar 

  • Kostovic I (1990) Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Prog Brain Res 85:223–239, discussion 239–240

    Article  PubMed  CAS  Google Scholar 

  • Kostovic I, Jovanov-Milosevic N (2008) Subplate zone of the human brain: historical perspective and new concepts. Coll Antropol 32(Suppl 1):3–8

    PubMed  Google Scholar 

  • Kostovic I, Judas M (1998) Transient patterns of organization of the human fetal brain. Croat Med J 39(2):107–114

    PubMed  CAS  Google Scholar 

  • Kostovic I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267(1):1–6

    Article  PubMed  Google Scholar 

  • Kostovic I, Judas M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48(5):388–393

    Article  PubMed  Google Scholar 

  • Kostovic I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33(4):220–233

    Article  PubMed  Google Scholar 

  • Kostovic I, Judas M et al (1995) Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psy­chophysiol 19(2):85–102

    Article  PubMed  CAS  Google Scholar 

  • Kostovic I, Judas M et al (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12(5):536–544

    Article  PubMed  Google Scholar 

  • Lan LM, Yamashita Y et al (2000) Normal fetal brain development: MR imaging with a half-Fourier rapid acquisition with relaxation enhancement sequence. Radiology 215(1):205–210

    PubMed  CAS  Google Scholar 

  • Larroche JC (1981) Morphological criteria of central nervous system development in the human foetus. J Neuroradiol 8(2):93–108

    PubMed  CAS  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407

    PubMed  Google Scholar 

  • Lent R, Uziel D et al (2005) Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. J Comp Neurol 483(4):375–382

    Article  PubMed  Google Scholar 

  • Letinic K, Kostovic I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384(3):373–395

    Article  PubMed  CAS  Google Scholar 

  • Letinic K, Rakic P (2001) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4(9):931–936

    Article  PubMed  CAS  Google Scholar 

  • Letinic K, Zoncu R et al (2002) Origin of GABAergic neurons in the human neocortex. Nature 417(6889):645–649

    Article  PubMed  CAS  Google Scholar 

  • Levine D, Barnes PD (1999) Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology 210(3):751–758

    PubMed  CAS  Google Scholar 

  • Levine D, Trop I et al (2002) MR imaging appearance of fetal cerebral ventricular morphology. Radiology 223(3):652–660

    Article  PubMed  Google Scholar 

  • Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143(4 Suppl):S35–S45

    PubMed  CAS  Google Scholar 

  • Lindwall C, Fothergill T et al (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17(1):3–14

    Article  PubMed  CAS  Google Scholar 

  • Lowery CL, Hardman MP et al (2007) Neurodevelopmental changes of fetal pain. Semin Perinatol 31(5):275–282

    Article  PubMed  Google Scholar 

  • Maas LC, Mukherjee P et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22(3):1134–1140

    Article  PubMed  Google Scholar 

  • Manganaro L, Perrone A et al (2007) Evaluation of normal brain development by prenatal MR imaging. Radiol Med 112(3):444–455

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1990) Three-dimensional structural organization of layer I of the human cerebral cortex: a Golgi study. J Comp Neurol 299(1):89–105

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21(2):64–71

    Article  PubMed  CAS  Google Scholar 

  • McKinstry RC, Mathur A et al (2002) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12(12):1237–1243

    Article  PubMed  Google Scholar 

  • Menezes JR, Marins M et al (2002) Cell migration in the postnatal subventricular zone. Braz J Med Biol Res 35(12):1411–1421

    Article  PubMed  CAS  Google Scholar 

  • Mihajlovic P, Zecevic N (1986) Development of the human dentate nucleus. Hum Neurobiol 5(3):189–197

    PubMed  CAS  Google Scholar 

  • Molnar Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18(9):389–397

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Miller JH et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23(9):1445–1456

    PubMed  Google Scholar 

  • Muller F, O’Rahilly R (1988) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol (Berl) 177(6):495–511

    Article  CAS  Google Scholar 

  • Nakayama T, Yamada R (1999) MR imaging of the posterior fossa structures of human embryos and fetuses. Radiat Med 17(2):105–114

    PubMed  CAS  Google Scholar 

  • Nara T, Goto N et al (1996) Morphometric development of the human fetal auditory system: inferior collicular nucleus. Brain Dev 18(1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Olesen AG, Svare JA (2004) Decreased fetal movements: background, assessment, and clinical management. Acta Obstet Gynecol Scand 83(9):818–826

    PubMed  Google Scholar 

  • O’Rahilly R, Muller F (1999) Minireview: summary of the initial development of the human nervous system. Teratology 60(1):39–41

    Article  PubMed  Google Scholar 

  • Parazzini C, Righini A et al (2008) Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks. Neuroradiology 50(10):877–883

    Article  PubMed  CAS  Google Scholar 

  • Partridge SC, Mukherjee P et al (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22(3):1302–1314

    Article  PubMed  Google Scholar 

  • Partridge SC, Mukherjee P et al (2005) Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 22(4):467–474

    Article  PubMed  Google Scholar 

  • Penrice J, Cady EB et al (1996) Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 40(1):6–14

    Article  PubMed  CAS  Google Scholar 

  • Petanjek Z, Dujmovic A et al (2008) Distinct origin of GABA-ergic neurons in forebrain of man, nonhuman primates and lower mammals. Coll Antropol 32(Suppl 1):9–17

    PubMed  Google Scholar 

  • Plachez C, Richards LJ (2005) Mechanisms of axon guidance in the developing nervous system. Curr Top Dev Biol 69:267–346

    Article  PubMed  CAS  Google Scholar 

  • Prayer D, Prayer L (2003) Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 45(3):235–243

    Article  PubMed  Google Scholar 

  • Prayer D, Brugger PC et al (2005) Triangular crossroads: a “Wetterwinkel” of the fetal brain. American Society of Neuroradiology, Toronto

    Google Scholar 

  • Prayer D, Kasprian G et al (2006) MRI of normal fetal brain development. Eur J Radiol 57(2):199–216

    Article  PubMed  Google Scholar 

  • Rados M, Judas M et al (2006) In vitro MRI of brain development. Eur J Radiol 57(2):187–198

    Article  PubMed  Google Scholar 

  • Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13(6):541–549

    Article  PubMed  Google Scholar 

  • Rakic P (2004) Neuroscience. Genetic control of cortical convolutions. Science 303(5666):1983–1984

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132(1):45–72

    Article  PubMed  CAS  Google Scholar 

  • Raybaud C (2010) The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology 52(6):447–477

    Article  PubMed  Google Scholar 

  • Ren T, Anderson A et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 288(2):191–204

    PubMed  Google Scholar 

  • Richards LJ (2002) Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum. Braz J Med Biol Res 35(12):1431–1439

    Article  PubMed  CAS  Google Scholar 

  • Richards LJ, Koester SE et al (1997) Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 17(7):2445–2458

    PubMed  CAS  Google Scholar 

  • Richards LJ, Plachez C et al (2004) Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 66(4):276–289

    Article  PubMed  CAS  Google Scholar 

  • Righini A, Bianchini E et al (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR Am J Neuroradiol 24(5):799–804

    PubMed  Google Scholar 

  • Righini A, Zirpoli S et al (2006) Hippocampal infolding angle changes during brain development assessed by prenatal MR imaging. AJNR Am J Neuroradiol 27(10):2093–2097

    PubMed  CAS  Google Scholar 

  • Righini A, Parazzini C et al (2009) Prenatal MR imaging of the normal pituitary stalk. AJNR Am J Neuroradiol 30(5):1014–1016

    Article  PubMed  CAS  Google Scholar 

  • Rutherford M, Jiang S et al (2008) MR imaging methods for assessing fetal brain development. Dev Neurobiol 68(6):700–711

    Article  PubMed  CAS  Google Scholar 

  • Samuelsen GB, Larsen KB et al (2003) The changing number of cells in the human fetal forebrain and its subdivisions: a stereological analysis. Cereb Cortex 13(2):115–122

    Article  PubMed  Google Scholar 

  • Sasaki M, Sone M et al (1993) Hippocampal sulcus remnant: potential cause of change in signal intensity in the hippocampus. Radiology 188(3):743–746

    PubMed  CAS  Google Scholar 

  • Schmook MT, Brugger PC et al (2010) Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27. Neuroradiology 52(6):495–504

    Article  PubMed  Google Scholar 

  • Schneider JF, Confort-Gouny S et al (2007) Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol 17(9):2422–2429

    Article  PubMed  CAS  Google Scholar 

  • Schneider MM, Berman JI et al (2009) Normative apparent diffusion coefficient values in the developing fetal brain. AJNR Am J Neuroradiol 30(9):1799–1803

    Article  PubMed  CAS  Google Scholar 

  • Shen WB, Plachez C et al (2006) Identification of candidate genes at the corticoseptal boundary during development. Gene Expr Patterns 6(5):471–481

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi K, Itoh M et al (2003) Myelination of a fetus with Pelizaeus-Merzbacher disease: immunopathological study. Ann Neurol 54(2):259–262

    Article  PubMed  CAS  Google Scholar 

  • Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21(8):2749–2758

    PubMed  CAS  Google Scholar 

  • Shu T, Puche AC et al (2003) Development of midline glial populations at the corticoseptal boundary. J Neurobiol 57(1):81–94

    Article  PubMed  Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62(1):1–35

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Lorenz SE et al (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210(1):10–29

    Article  PubMed  CAS  Google Scholar 

  • Simonati A, Tosati C et al (1999) Cell proliferation and death: morphological evidence during corticogenesis in the developing human brain. Microsc Res Tech 45(6):341–352

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72(5):295–339

    Article  PubMed  CAS  Google Scholar 

  • Sparling JW, Van Tol J et al (1999) Fetal and neonatal hand movement. Phys Ther 79(1):24–39

    PubMed  CAS  Google Scholar 

  • Stazzone MM, Hubbard AM et al (2000) Ultrafast MR imaging of the normal posterior fossa in fetuses. AJR Am J Roentgenol 175(3):835–839

    Article  PubMed  CAS  Google Scholar 

  • Super H, Uylings HB (2001) The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb Cortex 11(12):1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Sur M, Rubenstein JL (2005) Patterning and plasticity of the cerebral cortex. Science 310(5749):805–810

    Article  PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ (2000) Major events in the development of the forebrain. Eur J Morphol 38(5):301–308

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M (2009) Development of the human cerebellum and its disorders. Clin Perinatol 36(3):513–530

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M et al (2003) Development and developmental disorders of the human cerebellum. J Neurol 250(9):1025–1036

    Article  PubMed  Google Scholar 

  • Tilea B, Alberti C et al (2009) Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet Gynecol 33(2):173–181

    Article  PubMed  CAS  Google Scholar 

  • Toi A, Lister WS et al (2004) How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development? Ultrasound Obstet Gynecol 24(7):706–715

    Article  PubMed  CAS  Google Scholar 

  • Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15(12):1900–1913

    Article  PubMed  Google Scholar 

  • Triulzi F, Parazzini C et al (2005) MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med 10(5):411–420

    Article  PubMed  Google Scholar 

  • Tulay CM, Elevli L et al (2004) Morphological study of the perireticular nucleus in human fetal brains. J Anat 205(1):57–63

    Article  PubMed  Google Scholar 

  • Twickler DM, Reichel T et al (2002) Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging. Am J Obstet Gynecol 187(4):927–931

    Article  PubMed  Google Scholar 

  • Ulfig N (2000) The ganglionic eminence – new vistas. Trends Neurosci 23(11):530

    Article  PubMed  CAS  Google Scholar 

  • Ulfig N (2002) The ganglionic eminence – a putative intermediate target of amygdaloid connections. Brain Res Dev Brain Res 139(2):313–318

    Article  PubMed  CAS  Google Scholar 

  • van der Knaap MS, van Wezel-Meijler G et al (1996) Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 200(2):389–396

    PubMed  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318

    Article  PubMed  Google Scholar 

  • Widjaja E, Geibprasert S et al (2010a) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31(6):1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Widjaja E, Geibprasert S et al (2010b) Corroboration of normal and abnormal fetal cerebral lamination on postmortem MR imaging with postmortem examination. AJNR Am J Neuroradiol 0: ajnr.A2193v1-0

    Google Scholar 

  • Wimberger DM, Roberts TP et al (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 19(1):28–33

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Goto N (1997) Three-dimensional structure of the human cerebellar dentate nucleus: a computerized reconstruction study. Anat Embryol (Berl) 196(4):343–348

    Article  CAS  Google Scholar 

  • Yoo SS, Park HJ et al (2005) In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Invest Radiol 40(2):110–115

    Article  PubMed  Google Scholar 

  • Zecevic N (1993) Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32(2–3):131–149

    Article  PubMed  CAS  Google Scholar 

  • Zecevic N, Milosevic A et al (1999) Early development and composition of the human primordial plexiform layer: An immunohistochemical study. J Comp Neurol 412(2):241–254

    Article  PubMed  CAS  Google Scholar 

  • Zhai G, Lin W et al (2003) Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229(3):673–681

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Pugash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pugash, D., Nemec, U., Brugger, P.C., Prayer, D. (2010). Fetal MRI of Normal Brain Development. In: Prayer, D. (eds) Fetal MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_116

Download citation

  • DOI: https://doi.org/10.1007/174_2010_116

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73270-9

  • Online ISBN: 978-3-540-73271-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics