Fetal MRI pp 147-175 | Cite as

Fetal MRI of Normal Brain Development

  • Denise Pugash
  • Ursula Nemec
  • Peter C. Brugger
  • Daniela Prayer
Part of the Medical Radiology book series (MEDRAD)


The fetal brain is substantially different from the neonatal brain in terms of its structure and connectivity. Fetal MRI, beginning at 16–18 GW (gestational weeks), can be used to study fetal brain development and maturation in vivo. T2-weighted (T2W), T1-weighted (T1W), and diffusion-weighted (DW) imaging sequences can be used primarily to demonstrate morphology, parenchymal lamination, sulcation and gyration, the width of the subarachnoid spaces, and the size and shape of the midline structures. It is essential to understand MR signal changes associated with maturation, including the appearance and disappearance of transient structures, the underlying histological ­development of the fetal brain as well as the timing of development of landmarks in maturation in order to interpret normal and abnormal findings. It is the basis for understanding how neurogenetic development can be disrupted during vulnerable periods by different pathological processes, and how genetically controlled events in development correlate with functional development. The maturational stages of the fetal cerebral cortex, white matter, temporal lobe, and cerebellum, including structures that appear transiently in the developing brain as shown by various MR sequences, will be reviewed in this chapter.


Internal Capsule Intermediate Zone Ventricular Zone Cortical Plate Gestational Week 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham H, Tornoczky T et al (2001) Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci 19(1):53–62PubMedCrossRefGoogle Scholar
  2. Adamsbaum C, Moutard ML et al (2005) MRI of the fetal posterior fossa. Pediatr Radiol 35(2):124–140PubMedCrossRefGoogle Scholar
  3. Alagappan R, Browning PD et al (1994) Distal lateral ventricular atrium: reevaluation of normal range. Radiology 193(2):405–408PubMedGoogle Scholar
  4. Anjari M, Srinivasan L et al (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 35(3):1021–1027PubMedCrossRefGoogle Scholar
  5. Arber S (2004) Subplate neurons: bridging the gap to function in the cortex. Trends Neurosci 27(3):111–113PubMedCrossRefGoogle Scholar
  6. Arnold SE, Trojanowski JQ (1996) Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 367(2):274–292PubMedCrossRefGoogle Scholar
  7. Back SA, Luo NL et al (2002) Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol 61(2):197–211PubMedGoogle Scholar
  8. Ballabh P, Braun A et al (2004) Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 56(1):117–124PubMedCrossRefGoogle Scholar
  9. Barkovich AJ, Kjos BO et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166(1 Pt 1):173–180PubMedGoogle Scholar
  10. Basson MA, Echevarria D et al (2008) Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development 135(5):889–898PubMedCrossRefGoogle Scholar
  11. Battin M., Rutherford MA, (2001). MRI of the Fetal Brain. MA, Rutherford, Saunders Ltd.: 36–45Google Scholar
  12. Battin MR, Maalouf EF et al (1998) Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics 101(6):957–962PubMedCrossRefGoogle Scholar
  13. Ben-Ari Y, Khalilov I et al (2004) Interneurons set the tune of developing networks. Trends Neurosci 27(7):422–427PubMedCrossRefGoogle Scholar
  14. Berman JI, Mukherjee P et al (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27(4):862–871PubMedCrossRefGoogle Scholar
  15. Brazel CY, Romanko MJ et al (2003) Roles of the mammalian subventricular zone in brain development. Prog Neurobiol 69(1):49–69PubMedCrossRefGoogle Scholar
  16. Brisse H, Fallet C et al (1997) Supratentorial parenchyma in the developing fetal brain: in vitro MR study with histologic comparison. AJNR Am J Neuroradiol 18(8):1491–1497PubMedGoogle Scholar
  17. Bronen RA, Cheung G (1991) MRI of the temporal lobe: normal variations, with special reference toward epilepsy. Magn Reson Imaging 9(4):501–507PubMedCrossRefGoogle Scholar
  18. Brugger PC, Stuhr F et al (2006) Methods of fetal MR: beyond T2-weighted imaging. Eur J Radiol 57(2):172–181PubMedCrossRefGoogle Scholar
  19. Bui T, Daire JL et al (2006) Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatr Radiol 36(11):1133–1140PubMedCrossRefGoogle Scholar
  20. Bystron I, Rakic P et al (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9(7):880–886PubMedCrossRefGoogle Scholar
  21. Bystron I, Blakemore C et al (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9(2):110–122PubMedCrossRefGoogle Scholar
  22. Cardoza GR, Goldstein RB, Filly RA (1988) Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169(3):711–714PubMedGoogle Scholar
  23. Chi JG, Dooling EC et al (1977) Gyral development of the human brain. Ann Neurol 1(1):86–93PubMedCrossRefGoogle Scholar
  24. Childs AM, Ramenghi LA et al (2001) Cerebral maturation in premature infants: quantitative assessment using MR imaging. AJNR Am J Neuroradiol 22(8):1577–1582PubMedGoogle Scholar
  25. Chong BW, Babcook CJ et al (1996) A magnetic resonance template for normal neuronal migration in the fetus. Neurosurgery 39(1):110–116PubMedCrossRefGoogle Scholar
  26. Chong BW, Babcook CJ et al (1997) A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery 41(4):924–928, discussion 928-9PubMedCrossRefGoogle Scholar
  27. Chung R, Kasprian G et al (2009) The current state and future of fetal imaging. Clin Perinatol 36(3):685–699PubMedCrossRefGoogle Scholar
  28. Coleman KA, Mitrofanis J (1999) Does the perireticular thalamic nucleus project to the neocortex? Anat Embryol (Berl) 200(5):521–531CrossRefGoogle Scholar
  29. Corbin JG, Nery S et al (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182PubMedCrossRefGoogle Scholar
  30. Counsell SJ, Maalouf EF et al (2002) MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 23(5):872–881PubMedGoogle Scholar
  31. Daffos F, Forestier F et al (1988) Fetal curarization for prenatal magnetic resonance imaging. Prenat Diagn 8(4):312–314PubMedCrossRefGoogle Scholar
  32. Del Rio JA, Martinez A et al (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 10(8):784–801PubMedCrossRefGoogle Scholar
  33. Dorovini-Zis K, Dolman CL (1977) Gestational development of brain. Arch Pathol Lab Med 101(4):192–195PubMedGoogle Scholar
  34. Dubois J, Benders M et al (2008) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18(6):1444–1454PubMedCrossRefGoogle Scholar
  35. Earle KL, Mitrofanis J (1996) Genesis and fate of the perireticular thalamic nucleus during early development. J Comp Neurol 367(2):246–263PubMedCrossRefGoogle Scholar
  36. Eyre JA, Miller S et al (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123(Pt 1):51–64PubMedCrossRefGoogle Scholar
  37. Farrell TA, Hertzberg BS et al (1994) Fetal lateral ventricles: reassessment of normal values for atrial diameter at US. Radiology 193(2):409–411PubMedGoogle Scholar
  38. Fields RD (2004) Volume transmission in activity-dependent regulation of myelinating glia. Neurochem Int 45(4):503–509PubMedCrossRefGoogle Scholar
  39. Filly RA, Goldstein RB (1994) The fetal ventricular atrium: fourth down and 10 mm to go. Radiology 193(2):315–317PubMedGoogle Scholar
  40. Fischl B, Rajendran N et al (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18(8):1973–1980PubMedCrossRefGoogle Scholar
  41. Fishell G, Mason CA et al (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362(6421):636–638PubMedCrossRefGoogle Scholar
  42. Fogliarini C, Chaumoitre K et al (2005) Assessment of cortical maturation with prenatal MRI. Part I: Normal cortical maturation. Eur Radiol 15(8):1671–1685PubMedCrossRefGoogle Scholar
  43. Garel C (2004) MRI of the fetal brain: normal development and cerebral pathologies. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  44. Garel C, Alberti C (2006) Coronal measurement of the fetal lateral ventricles: comparison between ultrasonography and magnetic resonance imaging. Ultrasound Obstet Gynecol 27(1):23–27PubMedCrossRefGoogle Scholar
  45. Garel C, Chantrel E et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 22(1):184–189PubMedGoogle Scholar
  46. Garel C, Chantrel E et al (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19(7–8):422–425PubMedCrossRefGoogle Scholar
  47. Garel C, Delezoide AL et al (2004) Contribution of fetal MR imaging in the evaluation of cerebral ischemic lesions. AJNR Am J Neuroradiol 25(9):1563–1568PubMedGoogle Scholar
  48. Girard NJ, Raybaud CA (1992) In vivo MRI of fetal brain cellular migration. J Comput Assist Tomogr 16(2):265–267PubMedCrossRefGoogle Scholar
  49. Girard N, Raybaud C et al (1991) MRI study of brain myelination. J Neuroradiol 18(4):291–307PubMedGoogle Scholar
  50. Girard N, Raybaud C et al (1995) In vivo MR study of brain maturation in normal fetuses. AJNR Am J Neuroradiol 16(2):407–413PubMedGoogle Scholar
  51. Glenn OA, Barkovich AJ (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol 27(8):1604–1611PubMedGoogle Scholar
  52. Grever WE, Chiu FC et al (1996) Quantification of myelin basic protein in the human fetal spinal cord during the midtrimester of gestation. J Comp Neurol 376(2):306–314PubMedCrossRefGoogle Scholar
  53. Gupta RK, Hasan KM et al (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81(2):172–178PubMedCrossRefGoogle Scholar
  54. Hankin MH, Silver J (1988) Development of intersecting CNS fiber tracts: the corpus callosum and its perforating fiber pathway. J Comp Neurol 272(2):177–190PubMedCrossRefGoogle Scholar
  55. Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl) 210(5–6):411–417CrossRefGoogle Scholar
  56. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32(3):989–994PubMedCrossRefGoogle Scholar
  57. Huang H, Zhang J et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33(1):27–38PubMedCrossRefGoogle Scholar
  58. Huang H, Xue R et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29(13):4263–4273PubMedCrossRefGoogle Scholar
  59. Huppi PS, Maier SE et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44(4):584–590PubMedCrossRefGoogle Scholar
  60. Hynes RO, Patel R et al (1986) Migration of neuroblasts along preexisting axonal tracts during prenatal cerebellar development. J Neurosci 6(3):867–876PubMedGoogle Scholar
  61. Isumi H, Mizuguchi M et al (1997) Differential development of the human cerebellar vermis: immunohistochemical and morphometrical evaluation. Brain Dev 19(4):254–257PubMedCrossRefGoogle Scholar
  62. Jakovcevski I, Zecevic N (2005) Olig transcription factors are expressed in oligodendrocyte and neuronal cells in human fetal CNS. J Neurosci 25(44):10064–10073PubMedCrossRefGoogle Scholar
  63. Joseph R (2000) Fetal brain behavior and cognitive development. Dev Rev 20:81–98CrossRefGoogle Scholar
  64. Jovanov-Milosevic N, Culjat M et al (2009) Growth of the human corpus callosum: modular and laminar morphogenetic zones. Front Neuroanat 3:6PubMedCrossRefGoogle Scholar
  65. Judas M, Rados M et al (2005) Structural, immunocytochemical, and mr imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol 26(10):2671–2684PubMedGoogle Scholar
  66. Kasprian G (2006) Growth and development of the fetal temporal lobe in vivo. Medical University of Vienna, ViennaGoogle Scholar
  67. Kasprian G, Brugger PC et al (2008) In utero tractography of fetal white matter development. Neuroimage 43(2):213–224PubMedCrossRefGoogle Scholar
  68. Kasprian G, Langs G et al (2010) The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study. Cereb Cortex. [Epub ahead of print]Google Scholar
  69. Katz MJ, Lasek RJ et al (1983) Ontophyletics of the nervous system: development of the corpus callosum and evolution of axon tracts. Proc Natl Acad Sci USA 80(19):5936–5940PubMedCrossRefGoogle Scholar
  70. Khazipov R, Esclapez M et al (2001) Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21(24):9770–9781PubMedGoogle Scholar
  71. Kier EL, Truwit CL (1996) The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 17(9):1631–1641PubMedGoogle Scholar
  72. Kier EL, Truwit CL (1997) The lamina rostralis: modification of concepts concerning the anatomy, embryology, and MR appearance of the rostrum of the corpus callosum. AJNR Am J Neuroradiol 18(4):715–722PubMedGoogle Scholar
  73. Kier EL, Kim JH et al (1997) Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. AJNR Am J Neuroradiol 18(3):525–532PubMedGoogle Scholar
  74. Kinney HC (2005) Human myelination and perinatal white matter disorders. J Neurol Sci 228(2):190–192PubMedCrossRefGoogle Scholar
  75. Kinoshita Y, Okudera T et al (2001) Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. AJNR Am J Neuroradiol 22(2):382–388PubMedGoogle Scholar
  76. Koester SE, O’Leary DD (1994) Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 14(11 Pt 1):6608–6620PubMedGoogle Scholar
  77. Kostovic I (1990) Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Prog Brain Res 85:223–239, discussion 239–240PubMedCrossRefGoogle Scholar
  78. Kostovic I, Jovanov-Milosevic N (2008) Subplate zone of the human brain: historical perspective and new concepts. Coll Antropol 32(Suppl 1):3–8PubMedGoogle Scholar
  79. Kostovic I, Judas M (1998) Transient patterns of organization of the human fetal brain. Croat Med J 39(2):107–114PubMedGoogle Scholar
  80. Kostovic I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267(1):1–6PubMedCrossRefGoogle Scholar
  81. Kostovic I, Judas M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48(5):388–393PubMedCrossRefGoogle Scholar
  82. Kostovic I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33(4):220–233PubMedCrossRefGoogle Scholar
  83. Kostovic I, Judas M et al (1995) Ontogenesis of goal-directed behavior: anatomo-functional considerations. Int J Psy­chophysiol 19(2):85–102PubMedCrossRefGoogle Scholar
  84. Kostovic I, Judas M et al (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12(5):536–544PubMedCrossRefGoogle Scholar
  85. Lan LM, Yamashita Y et al (2000) Normal fetal brain development: MR imaging with a half-Fourier rapid acquisition with relaxation enhancement sequence. Radiology 215(1):205–210PubMedGoogle Scholar
  86. Larroche JC (1981) Morphological criteria of central nervous system development in the human foetus. J Neuroradiol 8(2):93–108PubMedGoogle Scholar
  87. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407PubMedGoogle Scholar
  88. Lent R, Uziel D et al (2005) Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses. J Comp Neurol 483(4):375–382PubMedCrossRefGoogle Scholar
  89. Letinic K, Kostovic I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384(3):373–395PubMedCrossRefGoogle Scholar
  90. Letinic K, Rakic P (2001) Telencephalic origin of human thalamic GABAergic neurons. Nat Neurosci 4(9):931–936PubMedCrossRefGoogle Scholar
  91. Letinic K, Zoncu R et al (2002) Origin of GABAergic neurons in the human neocortex. Nature 417(6889):645–649PubMedCrossRefGoogle Scholar
  92. Levine D, Barnes PD (1999) Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology 210(3):751–758PubMedGoogle Scholar
  93. Levine D, Trop I et al (2002) MR imaging appearance of fetal cerebral ventricular morphology. Radiology 223(3):652–660PubMedCrossRefGoogle Scholar
  94. Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143(4 Suppl):S35–S45PubMedGoogle Scholar
  95. Lindwall C, Fothergill T et al (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17(1):3–14PubMedCrossRefGoogle Scholar
  96. Lowery CL, Hardman MP et al (2007) Neurodevelopmental changes of fetal pain. Semin Perinatol 31(5):275–282PubMedCrossRefGoogle Scholar
  97. Maas LC, Mukherjee P et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22(3):1134–1140PubMedCrossRefGoogle Scholar
  98. Manganaro L, Perrone A et al (2007) Evaluation of normal brain development by prenatal MR imaging. Radiol Med 112(3):444–455PubMedCrossRefGoogle Scholar
  99. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483PubMedCrossRefGoogle Scholar
  100. Marin-Padilla M (1990) Three-dimensional structural organization of layer I of the human cerebral cortex: a Golgi study. J Comp Neurol 299(1):89–105PubMedCrossRefGoogle Scholar
  101. Marin-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21(2):64–71PubMedCrossRefGoogle Scholar
  102. McKinstry RC, Mathur A et al (2002) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12(12):1237–1243PubMedCrossRefGoogle Scholar
  103. Menezes JR, Marins M et al (2002) Cell migration in the postnatal subventricular zone. Braz J Med Biol Res 35(12):1411–1421PubMedCrossRefGoogle Scholar
  104. Mihajlovic P, Zecevic N (1986) Development of the human dentate nucleus. Hum Neurobiol 5(3):189–197PubMedGoogle Scholar
  105. Molnar Z, Blakemore C (1995) How do thalamic axons find their way to the cortex? Trends Neurosci 18(9):389–397PubMedCrossRefGoogle Scholar
  106. Mukherjee P, Miller JH et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23(9):1445–1456PubMedGoogle Scholar
  107. Muller F, O’Rahilly R (1988) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol (Berl) 177(6):495–511CrossRefGoogle Scholar
  108. Nakayama T, Yamada R (1999) MR imaging of the posterior fossa structures of human embryos and fetuses. Radiat Med 17(2):105–114PubMedGoogle Scholar
  109. Nara T, Goto N et al (1996) Morphometric development of the human fetal auditory system: inferior collicular nucleus. Brain Dev 18(1):35–39PubMedCrossRefGoogle Scholar
  110. Olesen AG, Svare JA (2004) Decreased fetal movements: background, assessment, and clinical management. Acta Obstet Gynecol Scand 83(9):818–826PubMedGoogle Scholar
  111. O’Rahilly R, Muller F (1999) Minireview: summary of the initial development of the human nervous system. Teratology 60(1):39–41PubMedCrossRefGoogle Scholar
  112. Parazzini C, Righini A et al (2008) Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks. Neuroradiology 50(10):877–883PubMedCrossRefGoogle Scholar
  113. Partridge SC, Mukherjee P et al (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22(3):1302–1314PubMedCrossRefGoogle Scholar
  114. Partridge SC, Mukherjee P et al (2005) Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 22(4):467–474PubMedCrossRefGoogle Scholar
  115. Penrice J, Cady EB et al (1996) Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 40(1):6–14PubMedCrossRefGoogle Scholar
  116. Petanjek Z, Dujmovic A et al (2008) Distinct origin of GABA-ergic neurons in forebrain of man, nonhuman primates and lower mammals. Coll Antropol 32(Suppl 1):9–17PubMedGoogle Scholar
  117. Plachez C, Richards LJ (2005) Mechanisms of axon guidance in the developing nervous system. Curr Top Dev Biol 69:267–346PubMedCrossRefGoogle Scholar
  118. Prayer D, Prayer L (2003) Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 45(3):235–243PubMedCrossRefGoogle Scholar
  119. Prayer D, Brugger PC et al (2005) Triangular crossroads: a “Wetterwinkel” of the fetal brain. American Society of Neuroradiology, TorontoGoogle Scholar
  120. Prayer D, Kasprian G et al (2006) MRI of normal fetal brain development. Eur J Radiol 57(2):199–216PubMedCrossRefGoogle Scholar
  121. Rados M, Judas M et al (2006) In vitro MRI of brain development. Eur J Radiol 57(2):187–198PubMedCrossRefGoogle Scholar
  122. Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13(6):541–549PubMedCrossRefGoogle Scholar
  123. Rakic P (2004) Neuroscience. Genetic control of cortical convolutions. Science 303(5666):1983–1984PubMedCrossRefGoogle Scholar
  124. Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132(1):45–72PubMedCrossRefGoogle Scholar
  125. Raybaud C (2010) The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology 52(6):447–477PubMedCrossRefGoogle Scholar
  126. Ren T, Anderson A et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 288(2):191–204PubMedGoogle Scholar
  127. Richards LJ (2002) Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum. Braz J Med Biol Res 35(12):1431–1439PubMedCrossRefGoogle Scholar
  128. Richards LJ, Koester SE et al (1997) Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 17(7):2445–2458PubMedGoogle Scholar
  129. Richards LJ, Plachez C et al (2004) Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 66(4):276–289PubMedCrossRefGoogle Scholar
  130. Righini A, Bianchini E et al (2003) Apparent diffusion coefficient determination in normal fetal brain: a prenatal MR imaging study. AJNR Am J Neuroradiol 24(5):799–804PubMedGoogle Scholar
  131. Righini A, Zirpoli S et al (2006) Hippocampal infolding angle changes during brain development assessed by prenatal MR imaging. AJNR Am J Neuroradiol 27(10):2093–2097PubMedGoogle Scholar
  132. Righini A, Parazzini C et al (2009) Prenatal MR imaging of the normal pituitary stalk. AJNR Am J Neuroradiol 30(5):1014–1016PubMedCrossRefGoogle Scholar
  133. Rutherford M, Jiang S et al (2008) MR imaging methods for assessing fetal brain development. Dev Neurobiol 68(6):700–711PubMedCrossRefGoogle Scholar
  134. Samuelsen GB, Larsen KB et al (2003) The changing number of cells in the human fetal forebrain and its subdivisions: a stereological analysis. Cereb Cortex 13(2):115–122PubMedCrossRefGoogle Scholar
  135. Sasaki M, Sone M et al (1993) Hippocampal sulcus remnant: potential cause of change in signal intensity in the hippocampus. Radiology 188(3):743–746PubMedGoogle Scholar
  136. Schmook MT, Brugger PC et al (2010) Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27. Neuroradiology 52(6):495–504PubMedCrossRefGoogle Scholar
  137. Schneider JF, Confort-Gouny S et al (2007) Diffusion-weighted imaging in normal fetal brain maturation. Eur Radiol 17(9):2422–2429PubMedCrossRefGoogle Scholar
  138. Schneider MM, Berman JI et al (2009) Normative apparent diffusion coefficient values in the developing fetal brain. AJNR Am J Neuroradiol 30(9):1799–1803PubMedCrossRefGoogle Scholar
  139. Shen WB, Plachez C et al (2006) Identification of candidate genes at the corticoseptal boundary during development. Gene Expr Patterns 6(5):471–481PubMedCrossRefGoogle Scholar
  140. Shiraishi K, Itoh M et al (2003) Myelination of a fetus with Pelizaeus-Merzbacher disease: immunopathological study. Ann Neurol 54(2):259–262PubMedCrossRefGoogle Scholar
  141. Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21(8):2749–2758PubMedGoogle Scholar
  142. Shu T, Puche AC et al (2003) Development of midline glial populations at the corticoseptal boundary. J Neurobiol 57(1):81–94PubMedCrossRefGoogle Scholar
  143. Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62(1):1–35PubMedCrossRefGoogle Scholar
  144. Silver J, Lorenz SE et al (1982) Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210(1):10–29PubMedCrossRefGoogle Scholar
  145. Simonati A, Tosati C et al (1999) Cell proliferation and death: morphological evidence during corticogenesis in the developing human brain. Microsc Res Tech 45(6):341–352PubMedCrossRefGoogle Scholar
  146. Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72(5):295–339PubMedCrossRefGoogle Scholar
  147. Sparling JW, Van Tol J et al (1999) Fetal and neonatal hand movement. Phys Ther 79(1):24–39PubMedGoogle Scholar
  148. Stazzone MM, Hubbard AM et al (2000) Ultrafast MR imaging of the normal posterior fossa in fetuses. AJR Am J Roentgenol 175(3):835–839PubMedCrossRefGoogle Scholar
  149. Super H, Uylings HB (2001) The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb Cortex 11(12):1101–1109PubMedCrossRefGoogle Scholar
  150. Sur M, Rubenstein JL (2005) Patterning and plasticity of the cerebral cortex. Science 310(5749):805–810PubMedCrossRefGoogle Scholar
  151. ten Donkelaar HJ (2000) Major events in the development of the forebrain. Eur J Morphol 38(5):301–308PubMedGoogle Scholar
  152. ten Donkelaar HJ, Lammens M (2009) Development of the human cerebellum and its disorders. Clin Perinatol 36(3):513–530PubMedCrossRefGoogle Scholar
  153. ten Donkelaar HJ, Lammens M et al (2003) Development and developmental disorders of the human cerebellum. J Neurol 250(9):1025–1036PubMedCrossRefGoogle Scholar
  154. Tilea B, Alberti C et al (2009) Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet Gynecol 33(2):173–181PubMedCrossRefGoogle Scholar
  155. Toi A, Lister WS et al (2004) How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development? Ultrasound Obstet Gynecol 24(7):706–715PubMedCrossRefGoogle Scholar
  156. Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15(12):1900–1913PubMedCrossRefGoogle Scholar
  157. Triulzi F, Parazzini C et al (2005) MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med 10(5):411–420PubMedCrossRefGoogle Scholar
  158. Tulay CM, Elevli L et al (2004) Morphological study of the perireticular nucleus in human fetal brains. J Anat 205(1):57–63PubMedCrossRefGoogle Scholar
  159. Twickler DM, Reichel T et al (2002) Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging. Am J Obstet Gynecol 187(4):927–931PubMedCrossRefGoogle Scholar
  160. Ulfig N (2000) The ganglionic eminence – new vistas. Trends Neurosci 23(11):530PubMedCrossRefGoogle Scholar
  161. Ulfig N (2002) The ganglionic eminence – a putative intermediate target of amygdaloid connections. Brain Res Dev Brain Res 139(2):313–318PubMedCrossRefGoogle Scholar
  162. van der Knaap MS, van Wezel-Meijler G et al (1996) Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 200(2):389–396PubMedGoogle Scholar
  163. Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614):313–318PubMedCrossRefGoogle Scholar
  164. Widjaja E, Geibprasert S et al (2010a) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31(6):1091–1099PubMedCrossRefGoogle Scholar
  165. Widjaja E, Geibprasert S et al (2010b) Corroboration of normal and abnormal fetal cerebral lamination on postmortem MR imaging with postmortem examination. AJNR Am J Neuroradiol 0: ajnr.A2193v1-0Google Scholar
  166. Wimberger DM, Roberts TP et al (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 19(1):28–33PubMedCrossRefGoogle Scholar
  167. Yamaguchi K, Goto N (1997) Three-dimensional structure of the human cerebellar dentate nucleus: a computerized reconstruction study. Anat Embryol (Berl) 196(4):343–348CrossRefGoogle Scholar
  168. Yoo SS, Park HJ et al (2005) In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Invest Radiol 40(2):110–115PubMedCrossRefGoogle Scholar
  169. Zecevic N (1993) Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32(2–3):131–149PubMedCrossRefGoogle Scholar
  170. Zecevic N, Milosevic A et al (1999) Early development and composition of the human primordial plexiform layer: An immunohistochemical study. J Comp Neurol 412(2):241–254PubMedCrossRefGoogle Scholar
  171. Zhai G, Lin W et al (2003) Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229(3):673–681PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Denise Pugash
    • 1
  • Ursula Nemec
    • 2
  • Peter C. Brugger
    • 3
  • Daniela Prayer
    • 2
  1. 1.Departments of Radiology and Obstetrics and Gynecology, Division of Maternal-Fetal MedicineBritish Columbia Women’s Hospital and University of British ColumbiaVancouverCanada
  2. 2.University Clinics of Radiodiagnostics and Medical University of ViennaWienAustria
  3. 3.Integrative Morphology Group, Centre of Anatomy and Cell BiologyMedical University of ViennaViennaAustria

Personalised recommendations