Skip to main content

Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function

  • Chapter
  • First Online:
The Kappa Opioid Receptor

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 271))

Abstract

This chapter provides a general introduction to the dynorphins (DYNs)/kappa opioid receptor (KOR) system, including DYN peptides, neuroanatomy of the DYNs/KOR system, cellular signaling, and in vivo behavioral effects of KOR activation and inhibition. It is intended to serve as a primer for the book and to provide a basic background for the chapters in the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115:1363–1381

    CAS  PubMed  Google Scholar 

  • Ansonoff MA, Zhang J, Czyzyk T, Rothman RB, Stewart J, Xu H, Zjwiony J, Siebert DJ, Yang F, Roth BL, Pintar JE (2006) Antinociceptive and hypothermic effects of Salvinorin A are abolished in a novel strain of kappa-opioid receptor-1 knockout mice. J Pharmacol Exp Ther 318:641–648

    CAS  PubMed  Google Scholar 

  • Appleyard SM, Patterson TA, Jin WZ, Chavkin C (1997) Agonist-induced phosphorylation of the kappa-opioid receptor. J Neurochem 69:2405–2412

    CAS  PubMed  Google Scholar 

  • Arvidsson U, Riedl M, Chakrabarti S, Vulchanova L, Lee JH, Nakano AH, Lin X, Loh HH, Law P-Y, Wessendorf MW, Elde R (1995) The kappa-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc Natl Acad Sci U S A 92:5062–5066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckett AH, Casy AF (1954) Stereochemistry of certain analgesics. Nature 173:1231–1232. https://doi.org/10.1038/1731231a0

    Article  CAS  PubMed  Google Scholar 

  • Bilkei-Gorzo A, Erk S, Schürmann B, Mauer D, Michel K, Boecker H, Scheef L, Walter H, Zimmer A (2012) Dynorphins regulate fear memory: from mice to men. J Neurosci 32:9335–9343. https://doi.org/10.1523/jneurosci.1034-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn LM, Aubé J (2017) Seeking (and finding) biased ligands of the kappa opioid receptor. ACS Med Chem Lett 8:694–700. https://doi.org/10.1021/acsmedchemlett.7b00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn LM, Belcheva MM, Coscia CJ (2000) Mitogenic signaling via endogenous kappa-opioid receptors in C6 glioma cells: evidence for the involvement of protein kinase C and the mitogen-activated protein kinase signaling cascade. J Neurochem 74:564–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl) 210:137–147

    CAS  Google Scholar 

  • Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–18089

    CAS  PubMed  Google Scholar 

  • Bruchas MR, Yang T, Schreiber S, Defino M, Kwan SC, Li S, Chavkin C (2007) Long-acting kappa opioid antagonists disrupt receptor signaling and produce noncompetitive effects by activating c-Jun N-terminal kinase. J Biol Chem 282:29803–29811

    CAS  PubMed  Google Scholar 

  • Bruchas MR, Land BB, Chavkin C (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55

    CAS  PubMed  Google Scholar 

  • Buda JJ, Carroll FI, Kosten TR, Swearingen D, Walters BB (2015) A double-blind, placebo-controlled trial to evaluate the safety, tolerability, and pharmacokinetics of single, escalating oral doses of JDTic. Neuropsychopharmacology 40:2059–2065. https://doi.org/10.1038/npp.2015.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Huang H, Kuzirian MS, Snyder LM, Matsushita M, Lee MC, Ferguson C, Homanics GE, Barth AL, Ross SE (2016) Generation of a KOR-Cre knockin mouse strain to study cells involved in kappa opioid signaling. Genesis 54:29–37. https://doi.org/10.1002/dvg.22910

    Article  CAS  PubMed  Google Scholar 

  • Carey AN, Lyons AM, Shay CF, Dunton O, McLaughlin JP (2009) Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory. J Neurosci 29:4293–4300. https://doi.org/10.1523/JNEUROSCI.6146-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll FI, Carlezon WA Jr (2013) Development of kappa opioid receptor antagonists. J Med Chem 56:2178–2195. https://doi.org/10.1021/jm301783x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caudle RM, Dubner R (1998) Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1-17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus. Neuropeptides 32:87–95. https://doi.org/10.1016/s0143-4179(98)90022-1

    Article  CAS  PubMed  Google Scholar 

  • Chartoff EH, Mavrikaki M (2015) Sex differences in kappa opioid receptor function and their potential impact on addiction. Front Neurosci 9:466. https://doi.org/10.3389/fnins.2015.00466

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavkin C (2013) Dynorphin – still an extraordinarily potent opioid peptide. Mol Pharmacol 83:729–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chavkin C, Koob GF (2016) Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology 41:373–374. https://doi.org/10.1038/npp.2015.258

    Article  CAS  PubMed  Google Scholar 

  • Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215:413–415

    CAS  PubMed  Google Scholar 

  • Chavkin C, Bakhit C, Weber E, Bloom FE (1983) Relative contents and concomitant release of prodynorphin/neoendorphin-derived peptides in rat hippocampus. Proc Natl Acad Sci U S A 80:7669–7673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172:55–67.e15. https://doi.org/10.1016/j.cell.2017.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che T, English J, Krumm BE, Kim K, Pardon E, Olsen RHJ, Wang S, Zhang S, Diberto JF, Sciaky N, Carroll FI, Steyaert J, Wacker D, Roth BL (2020) Nanobody-enabled monitoring of kappa opioid receptor states. Nat Commun 11:1145. https://doi.org/10.1038/s41467-020-14889-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chiu YT, Wu W, Huang P, Mann A, Schulz S, Liu-Chen LY (2016) Determination of sites of U50,488H-promoted phosphorylation of the mouse kappa opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization. Biochem J 473:497–508. https://doi.org/10.1042/BJ20141471

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Willhouse AH, Huang P, Ko N, Wang Y, Xu B, Huang LHM, Kieffer B, Barbe MF, Liu-Chen LY (2020) Characterization of a Knock-in mouse line expressing a fusion protein of kappa opioid receptor conjugated with tdTomato: 3-dimensional brain imaging via CLARITY. eNeuro 7. https://doi.org/10.1523/ENEURO.0028-20.2020

  • Chiu YT, Chen C, Yu D, Schulz S, Liu-Chen LY (2017) Agonist-dependent and -independent kappa opioid receptor phosphorylation: distinct phosphorylation patterns and different cellular outcomes. Mol Pharmacol 92:588–600. https://doi.org/10.1124/mol.117.108555

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho HJ, Basbaum AI (1989) Ultrastructural analysis of dynorphin B-immunoreactive cells and terminals in the superficial dorsal horn of the deafferented spinal cord of the rat. J Comp Neurol 281:193–205

    CAS  PubMed  Google Scholar 

  • Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10:508–513. https://doi.org/10.1038/nmeth.2481

    Article  CAS  PubMed  Google Scholar 

  • Cowan A, Kehner GB, Inan S (2015) Targeting itch with ligands selective for kappa opioid receptors. Handb Exp Pharmacol 226:291–314. https://doi.org/10.1007/978-3-662-44605-8_16

    Article  CAS  PubMed  Google Scholar 

  • Crowley NA, Kash TL (2015) Kappa opioid receptor signaling in the brain: circuitry and implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry 62:51–60. https://doi.org/10.1016/j.pnpbp.2015.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darcq E, Kieffer BL (2018) Opioid receptors: drivers to addiction? Nat Rev Neurosci 19:499–514. https://doi.org/10.1038/s41583-018-0028-x

    Article  CAS  PubMed  Google Scholar 

  • Drake CT, Terman GW, Simmons ML, Milner TA, Kunkel DD, Schwartzkroin PA, Chavkin C (1994) Dynorphin opioids present in dentate granule cells may function as retrograde inhibitory neurotransmitters. J Neurosci 14:3736–3750. https://doi.org/10.1523/jneurosci.14-06-03736.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake CT, Patterson TA, Simmons ML, Chavkin C, Milner TA (1996) Kappa opioid receptor-like immunoreactivity in guinea pig brain: ultrastructural localization in presynaptic terminals in hippocampal formation. J Comp Neurol 370:377–395

    CAS  PubMed  Google Scholar 

  • Evans CJ, Keith DE, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    CAS  PubMed  Google Scholar 

  • Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249:293–336. https://doi.org/10.1002/cne.902490302

    Article  CAS  PubMed  Google Scholar 

  • Faouzi A, Varga BR, Majumdar S (2020) Biased opioid ligands. Molecules 25. https://doi.org/10.3390/molecules25184257

  • Femenía T, Manzanares J (2012) Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission. Addict Biol 17:322–337. https://doi.org/10.1111/j.1369-1600.2011.00378.x

    Article  CAS  PubMed  Google Scholar 

  • Femenía T, Pérez-Rial S, Urigüen L, Manzanares J (2011) Prodynorphin gene deletion increased anxiety-like behaviours, impaired the anxiolytic effect of bromazepam and altered GABAA receptor subunits gene expression in the amygdala. J Psychopharmacol 25:87–96. https://doi.org/10.1177/0269881110367724

    Article  CAS  PubMed  Google Scholar 

  • Fishbane S, Jamal A, Munera C, Wen W, Menzaghi F, Investigators K-T (2020) A phase 3 trial of Difelikefalin in hemodialysis patients with pruritus. N Engl J Med 382:222–232. https://doi.org/10.1056/NEJMoa1912770

    Article  CAS  PubMed  Google Scholar 

  • Fricker LD, Margolis EB, Gomes I, Devi LA (2020) Five decades of research on opioid peptides: current knowledge and unanswered questions. Mol Pharmacol 98:96–108. https://doi.org/10.1124/mol.120.119388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galeote L, Berrendero F, Bura SA, Zimmer A, Maldonado R (2009) Prodynorphin gene disruption increases the sensitivity to nicotine self-administration in mice. Int J Neuropsychopharmacol 12:615–625. https://doi.org/10.1017/s1461145708009450

    Article  CAS  PubMed  Google Scholar 

  • Gaveriaux-Ruff C, Kieffer BL (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 36:62–71

    CAS  PubMed  Google Scholar 

  • Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci U S A 68:1742–1747. https://doi.org/10.1073/pnas.68.8.1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A 76:6666–6670. https://doi.org/10.1073/pnas.76.12.6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes I, Sierra S, Lueptow L, Gupta A, Gouty S, Margolis EB, Cox BM, Devi LA (2020) Biased signaling by endogenous opioid peptides. Proc Natl Acad Sci U S A 117:11820–11828. https://doi.org/10.1073/pnas.2000712117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höllt V (1986) Opioid peptide processing and receptor selectivity. Annu Rev Pharmacol Toxicol 26:59–77. https://doi.org/10.1146/annurev.pa.26.040186.000423

    Article  PubMed  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–580

    CAS  PubMed  Google Scholar 

  • Hurlbut DE, Evans CJ, Barchas JD, Leslie FM (1986) The pharmacological profile of BAM 18. NIDA Res Monogr 75:81–84

    CAS  PubMed  Google Scholar 

  • Kieffer B, Befort K, Gaveriaux-Ruff C, Hirth CG (1992) The d-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization [published erratum appears in Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1193]. Proc Natl Acad Sci U S A 89:12048–12052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitchen I, Kelly M, Viveros MP (1990) Ontogenesis of kappa-opioid receptors in rat brain using [3H]U-69593 as a binding ligand. Eur J Pharmacol 175:93–96

    CAS  PubMed  Google Scholar 

  • Knapp RJ, Malatynska E, Collins N, Fang L, Wang JY, Hruby VJ, Roeske WR, Yamamura HI (1995) Molecular biology and pharmacology of cloned opioid receptors [review]. FASEB J 9:516–525

    CAS  PubMed  Google Scholar 

  • Knoll AT, Carlezon WA Jr (2010) Dynorphin, stress, and depression. Brain Res 1314:56–73

    CAS  PubMed  Google Scholar 

  • Krystal AD, Pizzagalli DA, Smoski M, Mathew SJ, Nurnberger J Jr, Lisanby SH, Iosifescu D, Murrough JW, Yang H, Weiner RD, Calabrese JR, Sanacora G, Hermes G, Keefe RSE, Song A, Goodman W, Szabo ST, Whitton AE, Gao K, Potter WZ (2020) A randomized proof-of-mechanism trial applying the 'fast-fail' approach to evaluating kappa-opioid antagonism as a treatment for anhedonia. Nat Med 26:760–768. https://doi.org/10.1038/s41591-020-0806-7

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F (2006) Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat Neurosci 9:1534–1540

    CAS  PubMed  Google Scholar 

  • Law P-Y (2011) Opioid receptor signal transduction mechanisms. In: Pasternak GW (ed) The opiate receptors, 2nd edn. The Humana Press, New York, pp 195–238

    Google Scholar 

  • Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412. https://doi.org/10.1152/physrev.00005.2009

    Article  PubMed  Google Scholar 

  • Lee JW, Joshi S, Chan JS, Wong YH (1998) Differential coupling of mu-, delta-, and kappa-opioid receptors to G alpha16-mediated stimulation of phospholipase C. J Neurochem 70:2203–2211

    CAS  PubMed  Google Scholar 

  • Li J-G, Luo LY, Krupnick JG, Benovic JL, Liu-Chen L-Y (1999) U50,488H-induced internalization of the human kappa opioid receptor involves a beta-arrestin- and dynamin-dependent mechanism. Kappa receptor internalization is not required for mitogen-activated protein kinase activation. J Biol Chem 274:12087–12094

    CAS  PubMed  Google Scholar 

  • Li J-G, Benovic JL, Liu-Chen L-Y (2000) Mechanisms of agonist-induced down-regulation of the human kappa-opioid receptor: internalization is required for down-regulation. Mol Pharmacol 58:795–801

    CAS  PubMed  Google Scholar 

  • Liu-Chen L-Y (2004) Agonist-induced regulation and trafficking of kappa opioid receptors. Life Sci 75:511–536

    CAS  PubMed  Google Scholar 

  • Loh HH, Tseng LF, Wei E, Li CH (1976) Beta-endorphin is a potent analgesic agent. Proc Natl Acad Sci U S A 73:2895–2898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J, Kosterlitz H (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    CAS  PubMed  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. Trends Neurosci 11:308–314

    CAS  PubMed  Google Scholar 

  • Mansour A, Fox CA, Meng F, Akil H, Watson SJ (1994) Kappa 1 receptor mRNA distribution in the rat CNS: comparison to kappa receptor binding and prodynorphin mRNA. Mol Cell Neurosci 5:124–144

    CAS  PubMed  Google Scholar 

  • Mansour A, Burke S, Pavlic RJ, Akil H, Watson SJ (1996) Immunohistochemical localization of the cloned kappa 1 receptor in the rat CNS and pituitary. Neuroscience 71:671–690

    CAS  PubMed  Google Scholar 

  • Mansson E, Bare L, Yang D (1994) Isolation of a human k opioid receptor cDNA from placenta. Biochem Biophys Res Commun 202:1431–1437

    CAS  PubMed  Google Scholar 

  • Marino KA, Shang Y, Filizola M (2018) Insights into the function of opioid receptors from molecular dynamics simulations of available crystal structures. Br J Pharmacol 175:2834–2845. https://doi.org/10.1111/bph.13774

    Article  CAS  PubMed  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gibert PE (1976) The effects of morphine and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    CAS  PubMed  Google Scholar 

  • McLennan GP, Kiss A, Miyatake M, Belcheva MM, Chambers KT, Pozek JJ, Mohabbat Y, Moyer RA, Bohn LM, Coscia CJ (2008) Kappa opioids promote the proliferation of astrocytes via Gbetagamma and beta-arrestin 2-dependent MAPK-mediated pathways. J Neurochem 107:1753–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ménard C, Tse YC, Cavanagh C, Chabot JG, Herzog H, Schwarzer C, Wong TP, Quirion R (2013) Knockdown of prodynorphin gene prevents cognitive decline, reduces anxiety, and rescues loss of group 1 metabotropic glutamate receptor function in aging. J Neurosci 33:12792–12804. https://doi.org/10.1523/jneurosci.0290-13.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Mores KL, Cummins BR, Cassell RJ, van Rijn RM (2019) A review of the therapeutic potential of recently developed G protein-biased kappa agonists. Front Pharmacol 10:407. https://doi.org/10.3389/fphar.2019.00407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenweck J, Frankowski KJ, Prisinzano TE, Aube J, Bohn LM (2015) Investigation of the role of betaarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus. Neuropharmacology 99:600–609. S0028-3908(15)30072-1 [pii]. https://doi.org/10.1016/j.neuropharm.2015.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology (Berl) 86:274–280

    CAS  Google Scholar 

  • Nguyen XV, Masse J, Kumar A, Vijitruth R, Kulik C, Liu M, Choi DY, Foster TC, Usynin I, Bakalkin G, Bing G (2005) Prodynorphin knockout mice demonstrate diminished age-associated impairment in spatial water maze performance. Behav Brain Res 161:254–262. https://doi.org/10.1016/j.bbr.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  • Nishi M, Takeshima H, Mori M, Nakagawara K, Takeuchi T (1994) Structure and chromosomal mapping of genes for the mouse kappa-opioid receptor and an opioid receptor homologue (MOR-C). Biochem Biophys Res Commun 205:1353–1357

    CAS  PubMed  Google Scholar 

  • Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM (2020) Strategies for developing κ opioid receptor agonists for the treatment of pain with fewer side effects. J Pharmacol Exp Ther 375:332–348. https://doi.org/10.1124/jpet.120.000134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peckys D, Landwehrmeyer GB (1999) Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88:1093–1135. https://doi.org/10.1016/s0306-4522(98)00251-6

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Sarkar S, Chang SL (2012) Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend 124:223–228. https://doi.org/10.1016/j.drugalcdep.2012.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    CAS  PubMed  Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776. https://doi.org/10.1126/science.3016896

    Article  CAS  PubMed  Google Scholar 

  • Pizzagalli DA, Smoski M, Ang YS, Whitton AE, Sanacora G, Mathew SJ, Nurnberger J Jr, Lisanby SH, Iosifescu DV, Murrough JW, Yang H, Weiner RD, Calabrese JR, Goodman W, Potter WZ, Krystal AD (2020) Selective kappa-opioid antagonism ameliorates anhedonic behavior: evidence from the fast-fail trial in mood and anxiety Spectrum disorders (FAST-MAS). Neuropsychopharmacology 45:1656–1663. https://doi.org/10.1038/s41386-020-0738-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portoghese PS, Lipkowski AW, Takemori AE (1987) Binaltorphimine and nor-binaltorphimine, potent and selective kappa-opioid receptor antagonists. Life Sci 40:1287–1292

    CAS  PubMed  Google Scholar 

  • Pradhan AA, Smith ML, Kieffer BL, Evans CJ (2012) Ligand-directed signalling within the opioid receptor family. Br J Pharmacol 167:960–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Presley CC, Lindsley CW (2018) DARK classics in chemical neuroscience: opium, a historical perspective. ACS Chem Nerosci 9:2503–2518. https://doi.org/10.1021/acschemneuro.8b00459

    Article  CAS  Google Scholar 

  • Podvin S, Yaksh T, Hook V (2016) The emerging role of spinal dynorphin in chronic pain: a therapeutic perspective. Annu Rev Pharmacol Toxicol 56:511–533. https://doi.org/10.1146/annurev-pharmtox-010715-103042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirion R, Pilapil C (1991) Distribution of multiple opioid receptors in the human brain. In: Mendelsohn FAO, Paxinos G (eds) Receptors in the human nervous system. Academic Press, Inc., San Diego, pp 103–121

    Google Scholar 

  • Quirion R, Pilapil C, Magnan J (1987) Localization of kappa opioid receptor binding sites in human forebrain using [3H]U69,593: comparison with [3H]bremazocine. Cell Mol Neurobiol 7:303–307

    CAS  PubMed  Google Scholar 

  • Redila VA, Chavkin C (2008) Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology (Berl) 200:59–70

    CAS  Google Scholar 

  • Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci U S A 99:11934–11939. https://doi.org/10.1073/pnas.182234399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schunk E, Rosskothen I, Wittmann W, Gaburro S, Singewald N, Herzog H, Schwarzer C (2008) Behavioural characterization of prodynorphin knockout mice. BMC Pharmacol 8(Suppl. 1):A5. https://doi.org/10.1186/1471-2210-8-S1-A5

    Article  PubMed Central  Google Scholar 

  • Schwarzer C (2009) 30 years of dynorphins – new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 123:353–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi N, Diehl N, Yaswen L, Brennan MB, Hochgeschwender U (2001) Generation of dynorphin knockout mice. Brain Res Mol Brain Res 86:70–75. https://doi.org/10.1016/s0169-328x(00)00264-3

    Article  CAS  PubMed  Google Scholar 

  • Shippenberg TS, Herz A (1986) Differential effects of mu and kappa opioid systems on motivational processes. NIDA Res Monogr 75:563–566

    CAS  PubMed  Google Scholar 

  • Shukla VK, Lemaire S (1994) Non-opioid effects of dynorphins: possible role of the NMDA receptor. Trends Pharmacol Sci 15:420–424. https://doi.org/10.1016/0165-6147(94)90091-4

    Article  CAS  PubMed  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A 70:1947–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonin F, Gaveriaux-Ruff C, Befort K, Matthes H, Lannes B, Micheletti G, Mattei MG, Charron G, Bloch B, Kieffer B (1995) Kappa-opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc Natl Acad Sci U S A 92:7006–7010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le M, Roques BP, Maldonado R, Kieffer BL (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J 17:886–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slowe SJ, Simonin F, Kieffer B, Kitchen I (1999) Quantitative autoradiography of mu-,delta- and kappa1 opioid receptors in kappa-opioid receptor knockout mice. Brain Res 818:335–345

    CAS  PubMed  Google Scholar 

  • Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 32:317–320. https://doi.org/10.1111/j.1600-0773.1973.tb01477.x

    Article  CAS  Google Scholar 

  • Therapeutics C (2020). https://www.caratherapeutics.com. Accessed 8 Dec 2020

  • Togashi Y, Umeuchi H, Okano K, Ando N, Yoshizawa Y, Honda T, Kawamura K, Endoh T, Utsumi J, Kamei J, Tanaka T, Nagase H (2002) Antipruritic activity of the kappa-opioid receptor agonist, TRK-820. Eur J Pharmacol 435:259–264

    CAS  PubMed  Google Scholar 

  • Tseng PY, Hoon MA (2020) Molecular genetics of kappa opioids in pain and itch sensations. Handb Exp Pharmacol. https://doi.org/10.1007/164_2020_397

  • Tso PH, Wong YH (2000) G(z) can mediate the acute actions of mu- and kappa-opioids but is not involved in opioid-induced adenylyl cyclase supersensitization. J Pharmacol Exp Ther 295:168–176

    CAS  PubMed  Google Scholar 

  • Unterwald EM, Knapp C, Zukin RS (1991) Neuroanatomical localization of kappa 1 and kappa 2 opioid receptors in rat and guinea pig brain. Brain Res 562:57–65

    CAS  PubMed  Google Scholar 

  • Van't Veer A, Carlezon WA Jr (2013) Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology (Berl) 229:435–452

    CAS  Google Scholar 

  • von Voigtlander PF, Lahti RA, Ludens JH (1983) U-50,488: a selective and structurally novel non-Mu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–12

    Google Scholar 

  • Wadenberg ML (2003) A review of the properties of spiradoline: a potent and selective kappa-opioid receptor agonist. CNS Drug Rev 9:187–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JJ, Evans CJ, Chavkin C (1991) Focal stimulation of the mossy fibers releases endogenous dynorphins that bind kappa 1-opioid receptors in guinea pig hippocampus. J Neurochem 57:333–343. https://doi.org/10.1111/j.1471-4159.1991.tb02132.x

    Article  CAS  PubMed  Google Scholar 

  • Walsh SL, Strain EC, Abreu ME, Bigelow GE (2001) Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl) 157:151–162

    CAS  Google Scholar 

  • Wang X, Dow-Edwards D, Anderson V, Minkoff H, Hurd YL (2006) Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use. Pharmacogenomics J 6:255–264. https://doi.org/10.1038/sj.tpj.6500375

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Rasakham K, Huang P, Chudnovskaya D, Cowan A, Liu-Chen LY (2011) Sex difference in ê-opioid receptor (KOPR)-mediated behaviors, brain region KOPR level and KOPR-mediated guanosine 5'-O-(3-[35S]thiotriphosphate) binding in the guinea pig. J Pharmacol Exp Ther 339:438–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • White KL, Robinson JE, Zhu H, DiBerto JF, Polepally PR, Zjawiony JK, Nichols DE, Malanga CJ, Roth BL (2015) The G protein-biased kappa-opioid receptor agonist RB-64 Is analgesic with a unique spectrum of activities in vivo. J Pharmacol Exp Ther 352:98–109. jpet.114.216820 [pii]. https://doi.org/10.1124/jpet.114.216820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34:775–785

    CAS  PubMed  Google Scholar 

  • Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zajecka JM, Stanford AD, Memisoglu A, Martin WF, Pathak S (2019) Buprenorphine/samidorphan combination for the adjunctive treatment of major depressive disorder: results of a phase III clinical trial (FORWARD-3). Neuropsychiatr Dis Treat 15:795–808. https://doi.org/10.2147/ndt.S199245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir N, Weber E, Palkovits M, Brownstein M (1984) Differential processing of prodynorphin and proenkephalin in specific regions of the rat brain. Proc Natl Acad Sci U S A 81:6886–6889. https://doi.org/10.1073/pnas.81.21.6886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Chen C, Xue JC, Kunapuli S, DeRiel JK, Liu-Chen L-Y (1995) Cloning of a human kappa opioid receptor from the brain. Life Sci 56:L201–L207

    Google Scholar 

Download references

Acknowledgements

The writing of this manuscript was supported by the NIH Grants R01DA041781, 1UG3TR003148-01, and 2P50 DA005010, and the Department of Defense Grant W81XWH-15-1-0435 (CMC), the National Institute of Mental Health Intramural Research Program and a Brain and Behavior Research Foundation NARSAD Young Investigator Award (HAT), the Austrian Science Fund (FWF: I4697) (MS), the NIH grants R01DA041359, R21DA045274, and P30DA013429 (LYLC).

Conflict of Interests: The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Yuan Liu-Chen .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

A video clip of 3-D images of KtdT/KtdT mouse brains showing KtdT distribution. Adult KtdT/KtdT mice were perfused and brains were cleared via CLARITY. Brains were imaged without IHC from dorsal and ventral sides and images were digitally re-constructed into 3-D images. Experiments were performed on three brains with similar results. [Reproduced from Chen et al. (2020)]. (MP4 41963 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cahill, C., Tejeda, H.A., Spetea, M., Chen, C., Liu-Chen, LY. (2021). Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function. In: Liu-Chen, LY., Inan, S. (eds) The Kappa Opioid Receptor. Handbook of Experimental Pharmacology, vol 271. Springer, Cham. https://doi.org/10.1007/164_2021_433

Download citation

Publish with us

Policies and ethics