Skip to main content

An Overview of the Tumor Microenvironment and Response to Immunotherapy in Gastrointestinal Malignancies

  • Chapter
  • First Online:
Immune Strategies for Gastrointestinal Cancer

Part of the book series: Cancer Immunotherapy ((CAIMUN,volume 2))

  • 81 Accesses

Abstract

The activity of the immune system under homeostasis and disease states is governed by complex interactions of cells both through direct cell–cell contact and the secretion of soluble immunomodulatory factors. In cancer, the tumor microenvironment is increasingly being recognized as a key mediator of these interactions. The tumor microenvironment consists of a diverse milieu of malignant and stromal cells that typically constitute the tissue, as well as both tissue-resident immune cells and those that infiltrate from the circulation. It is now clear that defining factors that govern the balance between heterogeneous cell populations within the microenvironment can advance our understanding of disease progression across different malignancies. In addition, this knowledge can be leveraged to improve clinical outcomes in patients with tumors that are traditionally refractory to immunotherapy. As the development of immunotherapeutic anticancer modalities has accelerated over the past decade, it has become abundantly clear that we must investigate and understand these interactions to rationally design effective treatment regimens. In this chapter, we will outline the major players within the tumor microenvironment across prevalent gastrointestinal malignancies. Emphasis will be placed on cell types, such as fibroblasts, that play a substantial role in shaping the dynamic microenvironment of gastrointestinal cancers. We will also describe the differential response of selected gastrointestinal cancers to immunotherapy and illustrate how the microenvironment influences these responses. This chapter will provide the reader with a fundamental overview of the tumor microenvironment and immunotherapy in gastrointestinal malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blander JM (2016) Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. FEBS J 283(14):2720–2730

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140(6):1807–1816

    Article  PubMed  Google Scholar 

  3. Kulkarni MS, Yielding KL (1985) DNA damage and repair in epithelial (mucous) cells and crypt cells from isolated colon. Chem Biol Interact 52(3):311–318

    Article  PubMed  Google Scholar 

  4. Napier KJ, Scheerer M, Misra S (2014) Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 6(5):112–120

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carcas LP (2014) Gastric cancer review. J Carcinog 13:14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380(15):1450–1462

    Article  PubMed  Google Scholar 

  7. Benedict M, Zhang X (2017) Non-alcoholic fatty liver disease: an expanded review. World J Hepatol 9(16):715–732

    Article  PubMed  PubMed Central  Google Scholar 

  8. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264–73.e1

    Article  PubMed  Google Scholar 

  9. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR et al (2020) Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 17(9):557–588

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adamska A, Domenichini A, Falasca M (2017) Pancreatic ductal adenocarcinoma: current and evolving therapies. Int J Mol Sci 18(7):1338

    Article  PubMed  PubMed Central  Google Scholar 

  11. Machado NO, Al Qadhi H, Al Wahibi K (2015) Intraductal papillary mucinous neoplasm of pancreas. N Am J Med Sci 7(5):160–175

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun J (2017) Pancreatic neuroendocrine tumors. Intractable Rare Dis Res 6(1):21–28

    Article  PubMed  PubMed Central  Google Scholar 

  13. Williamson JM, Williamson RC (2014) Small bowel tumors: pathology and management. J Med Assoc Thail 97(1):126–137

    Google Scholar 

  14. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet 394(10207):1467–1480

    Article  PubMed  Google Scholar 

  15. Tiwari AK, Laird-Fick HS, Wali RK, Roy HK (2012) Surveillance for gastrointestinal malignancies. World J Gastroenterol 18(33):4507–4516

    Article  PubMed  PubMed Central  Google Scholar 

  16. Orth M, Metzger P, Gerum S, Mayerle J, Schneider G, Belka C et al (2019) Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 14(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tariq NU, McNamara MG, Valle JW (2019) Biliary tract cancers: current knowledge, clinical candidates and future challenges. Cancer Manag Res 11:2623–2642

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferrone CR, Marchegiani G, Hong TS, Ryan DP, Deshpande V, McDonnell EI et al (2015) Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg 261(1):12–17

    Article  PubMed  Google Scholar 

  19. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  PubMed  Google Scholar 

  20. Pandolfi F, Altamura S, Frosali S, Conti P (2016) Key role of DAMP in inflammation, cancer, and tissue repair. Clin Ther 38(5):1017–1028

    Article  PubMed  Google Scholar 

  21. Baker KJ, Houston A, Brint E (2019) IL-1 family members in cancer; two sides to every story. Front Immunol 10:1197

    Article  PubMed  PubMed Central  Google Scholar 

  22. O’Toole A, Michielsen AJ, Nolan B, Tosetto M, Sheahan K, Mulcahy HE et al (2014) Tumour microenvironment of both early- and late-stage colorectal cancer is equally immunosuppressive. Br J Cancer 111(5):927–932

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karamitopoulou E (2019) Tumour microenvironment of pancreatic cancer: immune landscape is dictated by molecular and histopathological features. Br J Cancer 121(1):5–14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V (2017) Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Transl Med 6(12):2115–2125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pon JR, Marra MA (2015) Driver and passenger mutations in cancer. Annu Rev Pathol 10:25–50

    Article  PubMed  Google Scholar 

  26. Cannon A, Thompson C, Hall BR, Jain M, Kumar S, Batra SK (2018) Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes Cancer 9(3–4):78–86

    Article  PubMed  PubMed Central  Google Scholar 

  27. Apte MV, Wilson JS, Lugea A, Pandol SJ (2013) A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144(6):1210–1219

    Article  PubMed  Google Scholar 

  28. Lohr M, Schmidt C, Ringel J, Kluth M, Muller P, Nizze H et al (2001) Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 61(2):550–555

    PubMed  Google Scholar 

  29. Bachem MG, Schunemann M, Ramadani M, Siech M, Beger H, Buck A et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128(4):907–921

    Article  PubMed  Google Scholar 

  30. Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I (2019) Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg 3(2):130–137

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shan T, Chen S, Chen X, Lin WR, Li W, Ma J et al (2017) Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep 37(4):1971–1979

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS et al (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018

    Article  PubMed  PubMed Central  Google Scholar 

  33. Halbrook CJ, Lyssiotis CA (2017) Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell 31(1):5–19

    Article  PubMed  Google Scholar 

  34. Lyssiotis CA, Kimmelman AC (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol 27(11):863–875

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128–134

    Article  PubMed  Google Scholar 

  36. Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E et al (2015) Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol 5:155

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roche J (2018) The epithelial-to-mesenchymal transition in cancer. Cancers (Basel) 10(2):52

    Article  PubMed  Google Scholar 

  38. Gaianigo N, Melisi D, Carbone C (2017) EMT and treatment resistance in pancreatic cancer. Cancers (Basel) 9(9):122

    Article  PubMed  Google Scholar 

  39. Vu T, Datta PK (2017) Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel) 9(12):171

    Article  PubMed  Google Scholar 

  40. Ramesh V, Brabletz T, Ceppi P (2020) Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 6(11):942–950

    Article  PubMed  Google Scholar 

  41. Huels DJ, Sansom OJ (2015) Stem vs non-stem cell origin of colorectal cancer. Br J Cancer 113(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu Y, Liu J, Nipper M, Wang P (2019) Ductal vs. acinar? Recent insights into identifying cell lineage of pancreatic ductal adenocarcinoma. Ann Pancreat Cancer 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611

    Article  PubMed  Google Scholar 

  44. Powell AE, Vlacich G, Zhao ZY, McKinley ET, Washington MK, Manning HC et al (2014) Inducible loss of one Apc allele in Lrig1-expressing progenitor cells results in multiple distal colonic tumors with features of familial adenomatous polyposis. Am J Physiol Gastrointest Liver Physiol 307(1):G16–G23

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457(7229):603–607

    Article  PubMed  Google Scholar 

  46. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C et al (2015) Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med 21(1):62–70

    Article  PubMed  Google Scholar 

  47. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK et al (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152(1–2):25–38

    Article  PubMed  Google Scholar 

  48. Busnardo AC, DiDio LJ, Tidrick RT, Thomford NR (1983) History of the pancreas. Am J Surg 146(5):539–550

    Article  PubMed  Google Scholar 

  49. Brembeck FH, Schreiber FS, Deramaudt TB, Craig L, Rhoades B, Swain G et al (2003) The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res 63(9):2005–2009

    PubMed  Google Scholar 

  50. Lee AYL, Dubois CL, Sarai K, Zarei S, Schaeffer DF, Sander M et al (2019) Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma. Gut 68(3):487–498

    Article  PubMed  Google Scholar 

  51. Lynch MD, Watt FM (2018) Fibroblast heterogeneity: implications for human disease. J Clin Invest 128(1):26–35

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598

    Article  PubMed  Google Scholar 

  53. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M et al (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214(3):579–596

    Article  PubMed  PubMed Central  Google Scholar 

  54. Koshida Y, Kuranami M, Watanabe M (2006) Interaction between stromal fibroblasts and colorectal cancer cells in the expression of vascular endothelial growth factor. J Surg Res 134(2):270–277

    Article  PubMed  Google Scholar 

  55. Zhu HF, Zhang XH, Gu CS, Zhong Y, Long T, Ma YD et al (2019) Cancer-associated fibroblasts promote colorectal cancer progression by secreting CLEC3B. Cancer Biol Ther 20(7):967–978

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25(6):735–747

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee JJ, Rothenberg ME, Seeley ES, Zimdahl B, Kawano S, Lu WJ et al (2016) Control of inflammation by stromal Hedgehog pathway activation restrains colitis. Proc Natl Acad Sci U S A 113(47):E7545–E7553

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ohlund D, Elyada E, Tuveson D (2014) Fibroblast heterogeneity in the cancer wound. J Exp Med 211(8):1503–1523

    Article  PubMed  PubMed Central  Google Scholar 

  60. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA et al (2019) Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 9(8):1102–1123

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J, Gierke S et al (2020) Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 10(2):232–253

    Article  PubMed  Google Scholar 

  62. Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S et al (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67(2):320–332

    Article  PubMed  Google Scholar 

  63. Zhang R, Qi F, Zhao F, Li G, Shao S, Zhang X et al (2019) Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis 10(4):273

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ahmadzadeh M, Rosenberg SA (2005) TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 174(9):5215–5223

    Article  PubMed  Google Scholar 

  65. Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8(5):369–380

    Article  PubMed  Google Scholar 

  66. Krenkel O, Tacke F (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17(5):306–321

    Article  PubMed  Google Scholar 

  67. Kuang DM, Peng C, Zhao Q, Wu Y, Chen MS, Zheng L (2010) Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 51(1):154–164

    Article  PubMed  Google Scholar 

  68. Zhu Y, Herndon JM, Sojka DK, Kim KW, Knolhoff BL, Zuo C et al (2017) Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47(2):323–38.e6

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE et al (2018) Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 67(6):1112–1123

    Article  PubMed  Google Scholar 

  70. Grossman JG, Nywening TM, Belt BA, Panni RZ, Krasnick BA, DeNardo DG et al (2018) Recruitment of CCR2(+) tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology 7(9):e1470729

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  PubMed  Google Scholar 

  72. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  PubMed  PubMed Central  Google Scholar 

  73. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292

    Article  PubMed  Google Scholar 

  74. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–288

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    Article  PubMed  Google Scholar 

  76. Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62(23):7042–7049

    PubMed  Google Scholar 

  77. Jedinak A, Dudhgaonkar S, Sliva D (2010) Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology 215(3):242–249

    Article  PubMed  Google Scholar 

  78. Cantero-Cid R, Casas-Martin J, Hernandez-Jimenez E, Cubillos-Zapata C, Varela-Serrano A, Avendano-Ortiz J et al (2018) PD-L1/PD-1 crosstalk in colorectal cancer: are we targeting the right cells? BMC Cancer 18(1):945

    Article  PubMed  PubMed Central  Google Scholar 

  79. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13(5):1472–1479

    Article  PubMed  Google Scholar 

  80. Edin S, Wikberg ML, Dahlin AM, Rutegard J, Oberg A, Oldenborg PA et al (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7(10):e47045

    Article  PubMed  PubMed Central  Google Scholar 

  81. Narayanan S, Kawaguchi T, Peng X, Qi Q, Liu S, Yan L et al (2019) Tumor infiltrating lymphocytes and macrophages improve survival in microsatellite unstable colorectal cancer. Sci Rep 9(1):13455

    Article  PubMed  PubMed Central  Google Scholar 

  82. Panni RZ, Herndon JM, Zuo C, Hegde S, Hogg GD, Knolhoff BL et al (2019) Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med 11(499):eaau9240

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA et al (1998) Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161(10):5313–5320

    Article  PubMed  Google Scholar 

  84. Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181(1):435–440

    Article  PubMed  Google Scholar 

  85. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S et al (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425; author reply 6

    Article  PubMed  PubMed Central  Google Scholar 

  86. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244

    Article  PubMed  Google Scholar 

  87. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182(1):240–249

    Article  PubMed  Google Scholar 

  90. Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN et al (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40(12):3347–3357

    Article  PubMed  PubMed Central  Google Scholar 

  91. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234

    Article  PubMed  Google Scholar 

  92. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    Article  PubMed  Google Scholar 

  93. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K et al (2015) Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 3(11):1236–1247

    Article  PubMed  PubMed Central  Google Scholar 

  95. Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME et al (2014) Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer 134(12):2853–2864

    Article  PubMed  Google Scholar 

  96. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191

    Article  PubMed  PubMed Central  Google Scholar 

  97. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77

    Article  PubMed  Google Scholar 

  98. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J et al (2019) Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 120(1):16–25

    Article  PubMed  Google Scholar 

  99. Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G et al (2015) CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 12(2):244–257

    Article  PubMed  PubMed Central  Google Scholar 

  100. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J et al (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 61(9):1373–1385

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kumar BV, Connors TJ, Farber DL (2018) Human T cell development, localization, and function throughout life. Immunity 48(2):202–213

    Article  PubMed  PubMed Central  Google Scholar 

  102. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  PubMed  PubMed Central  Google Scholar 

  103. Weiss A, Stobo JD (1984) Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line. J Exp Med 160(5):1284–1299

    Article  PubMed  Google Scholar 

  104. Birnbaum ME, Berry R, Hsiao YS, Chen Z, Shingu-Vazquez MA, Yu X et al (2014) Molecular architecture of the alphabeta T cell receptor-CD3 complex. Proc Natl Acad Sci U S A 111(49):17576–17581

    Article  PubMed  PubMed Central  Google Scholar 

  105. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang N, Bevan MJ (2011) CD8(+) T cells: foot soldiers of the immune system. Immunity 35(2):161–168

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393(6684):478–480

    Article  PubMed  Google Scholar 

  108. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393(6684):480–483

    Article  PubMed  Google Scholar 

  109. Wilson EB, Livingstone AM (2008) Cutting edge: CD4+ T cell-derived IL-2 is essential for help-dependent primary CD8+ T cell responses. J Immunol 181(11):7445–7448

    Article  PubMed  Google Scholar 

  110. Valitutti S (2012) The serial engagement model 17 years after: from TCR triggering to immunotherapy. Front Immunol 3:272

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gil D, Schrum AG, Alarcon B, Palmer E (2005) T cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J Exp Med 201(4):517–522

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242

    Article  PubMed  PubMed Central  Google Scholar 

  113. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480

    Article  PubMed  Google Scholar 

  114. June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 7(12):4472–4481

    PubMed  PubMed Central  Google Scholar 

  115. Ross SH, Cantrell DA (2018) Signaling and function of interleukin-2 in T lymphocytes. Annu Rev Immunol 36:411–433

    Article  PubMed  PubMed Central  Google Scholar 

  116. de Goer de Herve MG, Jaafoura S, Vallee M, Taoufik Y (2012) FoxP3(+) regulatory CD4 T cells control the generation of functional CD8 memory. Nat Commun 3:986

    Article  Google Scholar 

  117. McNally A, Hill GR, Sparwasser T, Thomas R, Steptoe RJ (2011) CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci U S A 108(18):7529–7534

    Article  PubMed  PubMed Central  Google Scholar 

  118. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 18(1):155

    Article  PubMed  PubMed Central  Google Scholar 

  119. Foerster F, Hess M, Gerhold-Ay A, Marquardt JU, Becker D, Galle PR et al (2018) The immune contexture of hepatocellular carcinoma predicts clinical outcome. Sci Rep 8(1):5351

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zheng X, Song X, Shao Y, Xu B, Chen L, Zhou Q et al (2017) Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: a meta-analysis. Oncotarget 8(34):57386–57398

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K et al (2019) Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer. Front Immunol 10:2368

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miksch RC, Schoenberg MB, Weniger M, Bosch F, Ormanns S, Mayer B et al (2019) Prognostic impact of tumor-infiltrating lymphocytes and neutrophils on survival of patients with upfront resection of pancreatic cancer. Cancers (Basel) 11(1):39

    Article  PubMed  Google Scholar 

  123. Ware MB, El-Rayes BF, Lesinski GB (2020) Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. J Immunother Cancer 8(2):e001100

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chen X, Wang L, Li P, Song M, Qin G, Gao Q et al (2018) Dual TGF-beta and PD-1 blockade synergistically enhances MAGE-A3-specific CD8(+) T cell response in esophageal squamous cell carcinoma. Int J Cancer 143(10):2561–2574

    Article  PubMed  Google Scholar 

  125. Oshima Y, Shimada H, Yajima S, Nanami T, Matsushita K, Nomura F et al (2016) NY-ESO-1 autoantibody as a tumor-specific biomarker for esophageal cancer: screening in 1969 patients with various cancers. J Gastroenterol 51(1):30–34

    Article  PubMed  Google Scholar 

  126. Spear S, Candido JB, McDermott JR, Ghirelli C, Maniati E, Beers SA et al (2019) Discrepancies in the tumor microenvironment of spontaneous and orthotopic murine models of pancreatic cancer uncover a new immunostimulatory phenotype for B cells. Front Immunol 10:542

    Article  PubMed  PubMed Central  Google Scholar 

  127. Roghanian A, Fraser C, Kleyman M, Chen J (2016) B cells promote pancreatic tumorigenesis. Cancer Discov 6(3):230–232

    Article  PubMed  Google Scholar 

  128. Edin S, Kaprio T, Hagstrom J, Larsson P, Mustonen H, Bockelman C et al (2019) The prognostic importance of CD20(+) B lymphocytes in colorectal cancer and the relation to other immune cell subsets. Sci Rep 9(1):19997

    Article  PubMed  PubMed Central  Google Scholar 

  129. Brodt P, Gordon J (1978) Anti-tumor immunity in B lymphocyte-deprived mice. I. Immunity to a chemically induced tumor. J Immunol 121(1):359–362

    Article  PubMed  Google Scholar 

  130. Shah S, Divekar AA, Hilchey SP, Cho HM, Newman CL, Shin SU et al (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117(4):574–586

    Article  PubMed  Google Scholar 

  131. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411–423

    Article  PubMed  Google Scholar 

  132. Fristedt R, Borg D, Hedner C, Berntsson J, Nodin B, Eberhard J et al (2016) Prognostic impact of tumour-associated B cells and plasma cells in oesophageal and gastric adenocarcinoma. J Gastrointest Oncol 7(6):848–859

    Article  PubMed  PubMed Central  Google Scholar 

  133. Berntsson J, Nodin B, Eberhard J, Micke P, Jirstrom K (2016) Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int J Cancer 139(5):1129–1139

    Article  PubMed  Google Scholar 

  134. Barnett LG, Simkins HM, Barnett BE, Korn LL, Johnson AL, Wherry EJ et al (2014) B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J Immunol 192(8):3607–3617

    Article  PubMed  Google Scholar 

  135. Crawford A, Macleod M, Schumacher T, Corlett L, Gray D (2006) Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J Immunol 176(6):3498–3506

    Article  PubMed  Google Scholar 

  136. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6(3):205–217

    Article  PubMed  Google Scholar 

  137. Carragher DM, Rangel-Moreno J, Randall TD (2008) Ectopic lymphoid tissues and local immunity. Semin Immunol 20(1):26–42

    Article  PubMed  PubMed Central  Google Scholar 

  138. Moyron-Quiroz JE, Rangel-Moreno J, Hartson L, Kusser K, Tighe MP, Klonowski KD et al (2006) Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25(4):643–654

    Article  PubMed  Google Scholar 

  139. Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, Malesci A et al (2014) Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin Cancer Res 20(8):2147–2158

    Article  PubMed  Google Scholar 

  140. Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB et al (2016) IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov 6(3):247–255

    Article  PubMed  Google Scholar 

  141. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B et al (2016) Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov 6(3):270–285

    Article  PubMed  Google Scholar 

  142. Huang C, Li N, Li Z, Chang A, Chen Y, Zhao T et al (2017) Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression. Nat Commun 8:14035

    Article  PubMed  PubMed Central  Google Scholar 

  143. Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469

    Article  PubMed  PubMed Central  Google Scholar 

  144. Shimasaki N, Jain A, Campana D (2020) NK cells for cancer immunotherapy. Nat Rev Drug Discov 19(3):200–218

    Article  PubMed  Google Scholar 

  145. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148

    Article  PubMed  Google Scholar 

  146. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055):675–678

    Article  PubMed  Google Scholar 

  147. Guillerey C, Huntington ND, Smyth MJ (2016) Targeting natural killer cells in cancer immunotherapy. Nat Immunol 17(9):1025–1036

    Article  PubMed  Google Scholar 

  148. Malmberg KJ, Carlsten M, Bjorklund A, Sohlberg E, Bryceson YT, Ljunggren HG (2017) Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol 31:20–29

    Article  PubMed  Google Scholar 

  149. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356(9244):1795–1799

    Article  PubMed  Google Scholar 

  150. Tang YP, Xie MZ, Li KZ, Li JL, Cai ZM, Hu BL (2020) Prognostic value of peripheral blood natural killer cells in colorectal cancer. BMC Gastroenterol 20(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  151. Van Audenaerde JRM, Roeyen G, Darcy PK, Kershaw MH, Peeters M, Smits ELJ (2018) Natural killer cells and their therapeutic role in pancreatic cancer: a systematic review. Pharmacol Ther 189:31–44

    Article  PubMed  Google Scholar 

  152. Lim SA, Kim J, Jeon S, Shin MH, Kwon J, Kim TJ et al (2019) Defective localization with impaired tumor cytotoxicity contributes to the immune escape of NK cells in pancreatic cancer patients. Front Immunol 10:496

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172(5):1022–37.e14

    Article  PubMed  PubMed Central  Google Scholar 

  154. Li H, Zhai N, Wang Z, Song H, Yang Y, Cui A et al (2018) Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 67(11):2035–2044

    Article  PubMed  Google Scholar 

  155. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM (2018) Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol 9:3176

    Article  PubMed  Google Scholar 

  156. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  PubMed  Google Scholar 

  157. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    Article  PubMed  Google Scholar 

  158. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2(3):151–161

    Article  PubMed  Google Scholar 

  159. Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83(5):451–461

    Article  PubMed  Google Scholar 

  160. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    Article  PubMed  Google Scholar 

  161. Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Yamao J, Kim S et al (2012) Circulating myeloid dendritic cells as prognostic factors in patients with pancreatic cancer who have undergone surgical resection. J Surg Res 173(2):299–308

    Article  PubMed  Google Scholar 

  162. Orsini G, Legitimo A, Failli A, Ferrari P, Nicolini A, Spisni R et al (2014) Quantification of blood dendritic cells in colorectal cancer patients during the course of disease. Pathol Oncol Res 20(2):267–276

    Article  PubMed  Google Scholar 

  163. Mazzolini G, Murillo O, Atorrasagasti C, Dubrot J, Tirapu I, Rizzo M et al (2007) Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol 13(44):5822–5831

    Article  PubMed  PubMed Central  Google Scholar 

  164. van Duijneveldt G, Griffin MDW, Putoczki TL (2020) Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond) 134(16):2091–2115

    Article  PubMed  Google Scholar 

  165. Nagathihalli NS, Castellanos JA, VanSaun MN, Dai X, Ambrose M, Guo Q et al (2016) Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 7(40):65982–65992

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wormann SM, Diakopoulos KN, Lesina M, Algul H (2014) The immune network in pancreatic cancer development and progression. Oncogene 33(23):2956–2967

    Article  PubMed  Google Scholar 

  167. Seifert AM, List J, Heiduk M, Decker R, von Renesse J, Meinecke AC et al (2020) Gamma-delta T cells stimulate IL-6 production by pancreatic stellate cells in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 146(12):3233–3240

    Article  PubMed  PubMed Central  Google Scholar 

  168. Holmer R, Goumas FA, Waetzig GH, Rose-John S, Kalthoff H (2014) Interleukin-6: a villain in the drama of pancreatic cancer development and progression. Hepatobiliary Pancreat Dis Int 13(4):371–380

    Article  PubMed  Google Scholar 

  169. Kim HW, Lee JC, Paik KH, Kang J, Kim J, Hwang JH (2017) Serum interleukin-6 is associated with pancreatic ductal adenocarcinoma progression pattern. Medicine (Baltimore) 96(5):e5926

    Article  PubMed  Google Scholar 

  170. Long KB, Tooker G, Tooker E, Luque SL, Lee JW, Pan X et al (2017) IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma. Mol Cancer Ther 16(9):1898–1908

    Article  PubMed  PubMed Central  Google Scholar 

  171. Iwahasi S, Rui F, Morine Y, Yamada S, Saito YU, Ikemoto T et al (2020) Hepatic stellate cells contribute to the tumor malignancy of hepatocellular carcinoma through the IL-6 pathway. Anticancer Res 40(2):743–749

    Article  PubMed  Google Scholar 

  172. Hsieh CC, Hung CH, Chiang M, Tsai YC, He JT (2019) Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling. Int J Mol Sci 20(20):5079

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL et al (2017) Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res 23(1):137–148

    Article  PubMed  Google Scholar 

  174. Long KB, Gladney WL, Tooker GM, Graham K, Fraietta JA, Beatty GL (2016) IFNgamma and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov 6(4):400–413

    Article  PubMed  PubMed Central  Google Scholar 

  175. McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158

    PubMed  PubMed Central  Google Scholar 

  176. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH et al (2019) Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol 16(6):361–375

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kelly RJ (2019) The emerging role of immunotherapy for esophageal cancer. Curr Opin Gastroenterol 35(4):337–343

    Article  PubMed  Google Scholar 

  178. Kelly RJ (2017) Immunotherapy for esophageal and gastric cancer. Am Soc Clin Oncol Educ Book 37:292–300

    Article  PubMed  Google Scholar 

  179. Smyth EC, Cervantes A (2020) Addition of nivolumab to chemotherapy in patients with advanced gastric cancer: a relevant step ahead, but still many questions to answer. ESMO Open 5(6):e001107

    Article  PubMed  PubMed Central  Google Scholar 

  180. Yang L, Wang Y, Wang H (2019) Use of immunotherapy in the treatment of gastric cancer. Oncol Lett 18(6):5681–5690

    PubMed  PubMed Central  Google Scholar 

  181. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13(7):2151–2157

    Article  PubMed  Google Scholar 

  182. Kamath SD, Kalyan A, Kircher S, Nimeiri H, Fought AJ, Benson A 3rd et al (2020) Ipilimumab and gemcitabine for advanced pancreatic cancer: a phase Ib study. Oncologist 25(5):e808–e815

    Article  PubMed  Google Scholar 

  183. Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL et al (2015) Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res 3(4):399–411

    Article  PubMed  PubMed Central  Google Scholar 

  184. O’Hara MH, O’Reilly EM, Varadhachary G, Wolff RA, Wainberg ZA, Ko AH et al (2021) CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol 22(1):118–131

    Article  PubMed  Google Scholar 

  185. Sarantis P, Koustas E, Papadimitropoulou A, Papavassiliou AG, Karamouzis MV (2020) Pancreatic ductal adenocarcinoma: treatment hurdles, tumor microenvironment and immunotherapy. World J Gastrointest Oncol 12(2):173–181

    Article  PubMed  PubMed Central  Google Scholar 

  186. Balachandran VP, Beatty GL, Dougan SK (2019) Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology 156(7):2056–2072

    Article  PubMed  Google Scholar 

  187. Gajiwala S, Torgeson A, Garrido-Laguna I, Kinsey C, Lloyd S (2018) Combination immunotherapy and radiation therapy strategies for pancreatic cancer-targeting multiple steps in the cancer immunity cycle. J Gastrointest Oncol. 9(6):1014–1026

    Article  PubMed  PubMed Central  Google Scholar 

  188. Akce M, Zaidi MY, Waller EK, El-Rayes BF, Lesinski GB (2018) The potential of CAR T cell therapy in pancreatic cancer. Front Immunol 9:2166

    Article  PubMed  PubMed Central  Google Scholar 

  189. Rahal A, Musher B (2017) Oncolytic viral therapy for pancreatic cancer. J Surg Oncol 116(1):94–103

    Article  PubMed  Google Scholar 

  190. Jakubowski CD, Azad NS (2020) Immune checkpoint inhibitor therapy in biliary tract cancer (cholangiocarcinoma). Chin Clin Oncol 9(1):2

    Article  PubMed  Google Scholar 

  191. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D et al (2017) Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 66(3):545–551

    Article  PubMed  Google Scholar 

  192. Sangro B, Gomez-Martin C, de la Mata M, Inarrairaegui M, Garralda E, Barrera P et al (2013) A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 59(1):81–88

    Article  PubMed  Google Scholar 

  193. Qin S, Finn RS, Kudo M, Meyer T, Vogel A, Ducreux M et al (2019) RATIONALE 301 study: tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Future Oncol 15(16):1811–1822

    Article  PubMed  Google Scholar 

  194. Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY et al (2020) Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 38(3):193–202

    Article  PubMed  Google Scholar 

  195. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382(20):1894–1905

    Article  PubMed  Google Scholar 

  196. Ghiringhelli F, Fumet JD (2019) Is there a place for immunotherapy for metastatic microsatellite stable colorectal cancer? Front Immunol 10:1816

    Article  PubMed  PubMed Central  Google Scholar 

  197. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175

    Article  PubMed  PubMed Central  Google Scholar 

  198. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  PubMed  PubMed Central  Google Scholar 

  199. Fabrizio DA, George TJ Jr, Dunne RF, Frampton G, Sun J, Gowen K et al (2018) Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 9(4):610–617

    Article  PubMed  PubMed Central  Google Scholar 

  200. Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C et al (2020) Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 383(23):2207–2218

    Article  PubMed  Google Scholar 

  201. Banerjea A, Bustin SA, Dorudi S (2005) The immunogenicity of colorectal cancers with high-degree microsatellite instability. World J Surg Oncol 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  202. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139

    Article  PubMed  Google Scholar 

  203. Marcus L, Lemery SJ, Keegan P, Pazdur R (2019) FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 25(13):3753–3758

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients and clinicians who continue to advance the field of cancer immunotherapy through their commitment to clinical research. The figures presented here were generated with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Lesinski .

Editor information

Editors and Affiliations

Ethics declarations

Funding

This work was supported by NIH grants R01CA208253, R01CA228406 and P30CA138292. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

Dr. Lesinski has consulted for ProDa Biotech, LLC and received compensation. Dr. Lesinski has received research funding through a sponsored research agreement between Emory University and Merck and Co., Bristol-Myers Squibb, Boerhinger-Ingelheim, and Vaccinex. Dr. Herting has no conflicts to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herting, C.J., Lesinski, G.B. (2021). An Overview of the Tumor Microenvironment and Response to Immunotherapy in Gastrointestinal Malignancies. In: Moehler, M., Foerster, F. (eds) Immune Strategies for Gastrointestinal Cancer. Cancer Immunotherapy, vol 2. Springer, Cham. https://doi.org/10.1007/13905_2021_1

Download citation

  • DOI: https://doi.org/10.1007/13905_2021_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39943-5

  • Online ISBN: 978-3-031-39944-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics