Skip to main content

Population Genomics of Cotton

  • Chapter
  • First Online:
Population Genomics: Crop Plants

Part of the book series: Population Genomics ((POGE))

Abstract

Cotton (Gossypium) is a fiber-producing oil seed crop with significant economic and scientific importance in natural textile fiber and edible oil industries. Cotton is an ideal crop model system for studying polyploidy, evolution, population genomics, and domestication, due to the presence of several species, wild relatives, and progenitors. Population genomics studies can provide key insights into genetic diversity, population structure, evolution, and domestication as well as genotype-phenotype associations and genomics-assisted breeding of Gossypium species. Population genomics research in cotton is lagging behind when compared to other crops with simple genomes due to its large complex genome size and polyploidy. However, modern genomics technologies such as sequencing, resequencing, comparative genomics, and whole-genome sequencing (WGS) have generated reference genomes of diploid and tetraploid cotton, which have addressed key questions about the role of polyploidy in the evolution of cotton. Population genomics studies and reference genomes have advanced understanding of genomic variation across species, gene expression changes, domestication, and evolutionary history of several species of Gossypium, and genetic variation underlying different traits of cotton such as fiber yield, fiber quality, biotic, and abiotic stress resistance/tolerance. These advances are facilitating selection and breeding of cotton for improved traits through genome-wide association studies (GWAS) and genomic selection. GWAS has discovered candidate genes for different quantitative trait loci (QTLs). Hence, population genomics approach will be a key component in studying genetic history of cotton domestication, improvement of different agronomic traits such as fiber quality, oil yield, disease resistance, and tolerance to extreme environmental conditions. This chapter discusses the recent advances made in cotton population genomics and its future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet. 2001;102(2):222–9.

    Article  CAS  Google Scholar 

  • Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, et al. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun. 2016;7:11706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelraheem A, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Wedegaertner T, et al. GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents. Mol Genet Genomics. 2021;296(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  • Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, et al. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics. 2008;92(6):478–87.

    Article  CAS  PubMed  Google Scholar 

  • Adams KL. Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered. 2007;98(2):136–41.

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol. 2017;26(2):420–30.

    Article  CAS  PubMed  Google Scholar 

  • An C, Saha S, Jenkins JN, Ma D-P, Scheffler BE, Kohel RJ, et al. Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theor Appl Genet. 2008;116(7):1015–26.

    Article  CAS  PubMed  Google Scholar 

  • Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):eaar7191.

    Article  Google Scholar 

  • Applequist WL, Cronn R, Wendel JF. Comparative development of fiber in wild and cultivated cotton. Evol Dev. 2001;3(1):3–17.

    Article  CAS  PubMed  Google Scholar 

  • Au KF, Sebastiano V, Afshar PT, Durruthy JD, Lee L, Williams BA, et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc Natl Acad Sci U S A. 2013;110(50):E4821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badigannavar A, Myers GO, Jones DC. Molecular diversity revealed by AFLP markers in upland cotton genotypes. J Crop Improv. 2012;26(5):627–40.

    Article  CAS  Google Scholar 

  • Bardak A, Bhatti K, Erdogan O, Mahmood Z, Khan N-U-I, Iqbal M, et al. Genetic mapping in cotton. In: Past, present and future trends in cotton breeding. IntechOpen, London; 2018.

    Google Scholar 

  • Batut P, Gingeras TR. RAMPAGE: promoter activity profiling by paired-end sequencing of 5′-complete cDNAs. Curr Protoc Mol Biol. 2013;104(1):25B.11.21–25B.11.16.

    Article  Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. Nat Plants. 2020;6(8):914–20.

    Article  PubMed  Google Scholar 

  • Baytar AA, Peynircioğlu C, Sezener V, Basal H, Frary A, Frary A, et al. Genome-wide association mapping of yield components and drought tolerance-related traits in cotton. Mol Breed. 2018;38(6):74.

    Article  Google Scholar 

  • Billings GT, Jones MA, Rustgi S, Bridges WC Jr, Holland JB, Hulse-Kemp AM, et al. Outlook for implementation of genomics-based selection in public cotton breeding programs. Plants (Basel). 2022;11(11):1446.

    CAS  PubMed  Google Scholar 

  • Blenda A, Fang DD, Rami J-F, Garsmeur O, Luo F, Lacape J-M. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One. 2012;7(9):e45739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boopathi NM, Hoffmann LV. Genetic diversity, erosion, and population structure in cotton genetic resources. In: Ahuja MR, Jain SM, editors. Genetic diversity and erosion in plants: case histories. Cham: Springer International Publishing; 2016. p. 409–38.

    Chapter  Google Scholar 

  • Bourke PM, Voorrips RE, Visser RGF, Maliepaard C. Tools for genetic studies in experimental populations of polyploids. Front Plant Sci. 2018;9:513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowman MJ, Park W, Bauer PJ, Udall JA, Page JT, Raney J, et al. RNA-Seq transcriptome profiling of upland cotton (Gossypium hirsutum L.) root tissue under water-deficit stress. PLoS One. 2013;8(12):e82634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol. 2011;12(10):232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brubaker CL, Wendel JF. Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot. 1994;81(10):1309–26.

    Article  Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome. 1999;42(2):184–203.

    Article  CAS  Google Scholar 

  • Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA. Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet. 2012;124(7):1201–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Zhu G, Zhang T, Guo W. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics. 2017;18(1):654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Cai X, Wang Q, Wang P, Zhang Y, Cai C, et al. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnol J. 2020;18(3):814–28.

    Article  CAS  PubMed  Google Scholar 

  • Campbell T, Saha S, Percy R, Frelichowski J, Jenkins J, Park W, et al. Status of the global cotton germplasm resources. Crop Sci. 2010;50:1161.

    Article  Google Scholar 

  • Cao D, Gao X, Liu J, Kimatu JN, Geng S, Wang X, et al. Methylation sensitive amplified polymorphism (MSAP) reveals that alkali stress triggers more DNA hypomethylation levels in cotton (Gossypium hirsutum L.) roots than salt stress. Afr J Biotechnol. 2011;10(82):18971–80.

    CAS  Google Scholar 

  • Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, et al. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet. 2005;111(4):772–81.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58(1):377–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007;145(4):1303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Jin X, Li X, Lin Z. Genetic mapping and comparative expression analysis of transcription factors in cotton. PLoS One. 2015;10(5):e0126150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Feng K, Grover CE, Li P, Liu F, Wang Y, et al. Chloroplast DNA structural variation, phylogeny, and age of divergence among diploid cotton species. PLoS One. 2016;11(6):e0157183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Sreedasyam A, Ando A, Song Q, De Santiago LM, Hulse-Kemp AM, et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet. 2020;52(5):525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury KA, Buth GM. Cotton seeds from the Neolithic in Egyptian Nubia and the origin of Old World cotton. Biol J Linn Soc. 1971;3(4):303–12.

    Article  Google Scholar 

  • Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y, Perez M, et al. Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol. 2020;21(1):104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronn RC, Small RL, Haselkorn T, Wendel JF. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot. 2002;89(4):707–25.

    Article  CAS  PubMed  Google Scholar 

  • Cronn R, Small RL, Haselkorn T, Wendel JF. Cryptic repeated genomic recombination during speciation in gossypium gossypioides. Evolution. 2003;57(11):2475–89.

    CAS  PubMed  Google Scholar 

  • Della Coletta R, Qiu Y, Ou S, Hufford MB, Hirsch CN. How the pan-genome is changing crop genomics and improvement. Genome Biol. 2021;22(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai A, Chee P, Rong J, May O, Paterson A. Desai A, Chee PW, Rong JK, May OL, Paterson AH. Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 49: 336-345. Genome / National Research Council Canada = Génome / Conseil national de recherches Canada. 2006;49:336–45.

    Article  Google Scholar 

  • Dong C, Wang J, Yu Y, Ju L, Zhou X, Ma X, et al. Identifying functional genes influencing Gossypium hirsutum fiber quality. Front Plant Sci. 2019;9:1968.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du X, Huang G, He S, Yang Z, Sun G, Ma X, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet. 2018;50(6):796–802.

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Gong H, Hu Y, Liu C, Zhou B, Huang T, et al. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol. 2017a;18(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang L, Guan X, Zhang T. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.). Crop J. 2017b;5(2):159–65.

    Article  Google Scholar 

  • Fang X, Liu X, Wang X, Wang W, Liu D, Zhang J, et al. Fine-mapping qFS07. 1 controlling fiber strength in upland cotton (Gossypium hirsutum L.). Theor Appl Genet. 2017c;130(4):795–806.

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV. Presidential address. Transposable elements, epigenetics, and genome evolution. Science. 2012;338(6108):758–67.

    Article  CAS  PubMed  Google Scholar 

  • Flagel LE, Wendel JF, Udall JA. Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics. 2012;13:302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryxell PA. A redefinition of the tribe Gossypieae. Bot Gaz. 1968;129(4):296–308.

    Article  Google Scholar 

  • Fryxell PA. The natural history of the cotton tribe (Malvaceae, tribe Gossypieae): Texas A & M University Press, Scientific publishers, Wuhan, China; 1979.

    Google Scholar 

  • Fryxell PA. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea. 1992;2(2):108–65.

    Google Scholar 

  • Gallagher JP, Grover CE, Rex K, Moran M, Wendel JF. A New Species of Cotton from Wake Atoll, Gossypium stephensii (Malvaceae). Syst Bot. 2017;42(1):115–23.

    Article  Google Scholar 

  • Gapare W, Liu S, Conaty W, Zhu Q-H, Gillespie V, Llewellyn D, et al. Historical datasets support genomic selection models for the prediction of cotton fiber quality phenotypes across multiple environments. G3 (Bethesda, Md). 2018;8(5):1721–32.

    Article  CAS  PubMed  Google Scholar 

  • Gerstel D. Chromosomal translocations in interspecific hybrids of the genus Gossypium. Evolution. 1953;7:234–44.

    Article  Google Scholar 

  • Gross BL, Strasburg JL. Cotton domestication: dramatic changes in a single cell. BMC Biol. 2010;8(1):137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grover CE, Gallagher JP, Jareczek JJ, Page JT, Udall JA, Gore MA, et al. Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol. 2015a;92:45–52.

    Article  PubMed  Google Scholar 

  • Grover CE, Zhu X, Grupp KK, Jareczek JJ, Gallagher JP, Szadkowski E, et al. Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack. Genetic Resour Crop Evol. 2015b;62(1):103–14.

    Article  Google Scholar 

  • Grover CE, Arick MA II, Thrash A, Conover JL, Sanders WS, Peterson DG, et al. Insights into the evolution of the New World diploid cottons (Gossypium, Subgenus Houzingenia) based on genome sequencing. Genome Biol Evol. 2018;11(1):53–71.

    Google Scholar 

  • Grover CE, Pan M, Yuan D, Arick MA, Hu G, Brase L, et al. The Gossypium longicalyx genome as a resource for cotton breeding and evolution. G3: Genes|Genomes|Genetics. 2020;10(5):1457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Song G, Liu Z, Qu X, Chen R, Jiang D, et al. Global epigenomic analysis indicates that Epialleles contribute to Allele-specific expression via Allele-specific histone modifications in hybrid rice. BMC Genomics. 2015;16(1):232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han M, Lu X, Yu J, Chen X, Wang X, Malik WA, et al. Transcriptome analysis reveals cotton (Gossypium hirsutum) genes that are differentially expressed in cadmium stress tolerance. Int J Mol Sci. 2019;20(6):1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MM-U, Ma F, Islam F, Sajid M, Prodhan ZH, Li F, et al. Comparative transcriptomic analysis of biological process and key pathway in three cotton (Gossypium spp.) species under drought stress. Int J Mol Sci. 2019;20(9):2076.

    Article  PubMed  PubMed Central  Google Scholar 

  • He S, Sun G, Huang L, Yang D, Dai P, Zhou D, et al. Genomic divergence in cotton germplasm related to maturity and heterosis. J Integr Plant Biol. 2019;61(8):929–42.

    Article  PubMed  Google Scholar 

  • He S, Wang P, Zhang Y-M, Dai P, Nazir MF, Jia Y, et al. Introgression leads to genomic divergence and responsible for important traits in upland cotton. Front Plant Sci. 2020;11:929.

    Article  PubMed  PubMed Central  Google Scholar 

  • He S, Sun G, Geng X, Gong W, Dai P, Jia Y, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet. 2021;53(6):916–24.

    Article  CAS  PubMed  Google Scholar 

  • Hekman JP, Johnson JL, Kukekova AV. Transcriptome analysis in domesticated species: challenges and strategies. Bioinform Biol Insights. 2015;9(Suppl 4):21–31.

    CAS  PubMed  Google Scholar 

  • Hinze LL, Gazave E, Gore MA, Fang DD, Scheffler BE, Yu JZ, et al. Genetic diversity of the two commercial tetraploid cotton species in the Gossypium diversity reference set. J Hered. 2016;107(3):274–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinze LL, Hulse-Kemp AM, Wilson IW, Zhu Q-H, Llewellyn DJ, Taylor JM, et al. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biol. 2017;17(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, et al. Analysis of alternative cleavage and polyadenylation by 3' region extraction and deep sequencing. Nat Methods. 2013;10(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Zhu G, Li Y, Li W, Fu J, Niu E, et al. Genome-Wide Association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum L.). Front Plant Sci. 2018;9:1276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hovav R, Chaudhary B, Udall JA, Flagel L, Wendel JF. Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton. Genetics. 2008;179(3):1725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hovav R, Faigenboim-Doron A, Kadmon N, Hu G, Zhang X, Gallagher JP, et al. A transcriptome profile for developing seed of polyploid cotton. Plant Genome. 2015;8(1):eplantgenome2014.2008.0041.

    Article  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739–48.

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Nie X, Shen C, You C, Li W, Zhao W, et al. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J. 2017;15(11):1374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G, Wu Z, Percy RG, Bai M, Li Y, Frelichowski JE, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet. 2020;52(5):516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Bethesda, Md). 2015;5(6):1187–209.

    Article  PubMed  Google Scholar 

  • Hutchinson JB, Silow RA, Stephens SG. The evolution of Gossypium and the differentiation of the cultivated cottons. New York: Oxford University Press, 1947. 160 p. $4.25. Sci Educ. 1948;32(3):225–6.

    Google Scholar 

  • Iqbal MJ, Aziz N, Saeed NA, Zafar Y, Malik KA. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet. 1997;94(1):139–44.

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Fang DD, Jenkins JN, Guo J, McCarty JC, Jones DC. Evaluation of genomic selection methods for predicting fiber quality traits in Upland cotton. Mol Genet Genomics. 2020;295(1):67–79.

    Article  CAS  PubMed  Google Scholar 

  • Jackson SA. Epigenomics: dissecting hybridization and polyploidization. Genome Biol. 2017;18(1):117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen P. Adding 'epi-' to behaviour genetics: implications for animal domestication. J Exp Biol. 2015;218(Pt 1):32–40.

    Article  PubMed  Google Scholar 

  • Jiang C, Wright RJ, El-Zik KM, Paterson AH. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci U S A. 1998;95(8):4419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature. 2004;431(7008):569–73.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jiang Y, Wang S, Zhang Q, Ding X. Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinf. 2019;20(1):556.

    Article  Google Scholar 

  • Kalia R, Rai M, Kalia S, Singh R, Dhawan A. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 2011;177:309–34.

    Article  CAS  Google Scholar 

  • Kantar MB, Nashoba AR, Anderson JE, Blackman BK, Rieseberg LH. The genetics and genomics of plant domestication. Bioscience. 2017;67(11):971–82.

    Article  Google Scholar 

  • Katageri I, Gowda A, Biradar M, Patil R, RM. Prospects for molecular breeding in cotton, Gossypium spp. In: Plant breeding - current and future views. IntechOpen, London; 2020.

    Google Scholar 

  • Kearney TH, Harrison GJ. Inheritance of smooth seeds in cotton. J Agric Res. 1927;35:193–217.

    Google Scholar 

  • Kuang M, Wei S-J, Wang Y-Q, Zhou D-Y, Ma L, Fang D, et al. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J Integr Agric. 2016;15(5):954–62.

    Article  Google Scholar 

  • Lacape J-M, Nguyen T-B, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, et al. A combined RFLP–SSR–AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome. 2003;46(4):612–26.

    Article  CAS  PubMed  Google Scholar 

  • Li T, Fan H, Li Z, Wei J, Cai Y, Lin Y. Effect of different light quality on DNA methylation variation for brown cotton (Gossypium hirstum). Afr J Biotechnol. 2011;10(33):6220–6.

    CAS  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46(6):567–72.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30.

    Article  PubMed  Google Scholar 

  • Li C, Dong Y, Zhao T, Li L, Li C, Yu E, et al. Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci. 2016;7:1356.

    PubMed  PubMed Central  Google Scholar 

  • Li P-T, Wang M, Lu Q-W, Ge Q, Rashid MHO, Liu A-Y, et al. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. BMC Genomics. 2017a;18(1):705.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Ma X, Li N, Zhou L, Liu Z, Han H, et al. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J. 2017b;15(12):1520–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P-T, Rashid MHO, Chen T-T, Lu Q-W, Ge Q, Gong W-K, et al. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G. hirsutum × G. barbadense in response to Verticillium dahliae infection. BMC Plant Biol. 2019a;19(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z-B, Zeng X-Y, Xu J-W, Zhao R-H, Wei Y-N. Transcriptomic profiling of cotton Gossypium hirsutum challenged with low-temperature gradients stress. Sci Data. 2019b;6(1):197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Chen L, Sun W, Wu D, Wang M, Yu Y, et al. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol J. 2020a;18(12):2533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Tian Q, Wang X, Han B, Liu L, Kong X, et al. Phenotypic plasticity and genetic variation of cotton yield and its related traits under water-limited conditions. Crop J. 2020b;8:966.

    Article  Google Scholar 

  • Li J, Yuan D, Wang P, Wang Q, Sun M, Liu Z, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol. 2021a;22(1):119.

    Google Scholar 

  • Li L, Zhang C, Huang J, Liu Q,Wei H,Wang H, et al. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J. 2021b;19(1):109–23.

    Google Scholar 

  • Liang C, Wan T, Xu S, Li B, Li X, Feng Y, et al. Molecular identification and genetic analysis of cherry cultivars using capillary electrophoresis with fluorescence-labeled SSR markers. 3 Biotech. 2018;8(1):16.

    Article  PubMed  Google Scholar 

  • Linck E, Battey CJ. Minor allele frequency thresholds strongly affect population structure inference with genomic data sets. Mol Ecol Resour. 2019;19(3):639–47.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Cantrell RG, McCarty JC Jr, Stewart JM. Simple sequence repeat–based assessment of genetic diversity in cotton race stock accessions. Crop Sci. 2000;40(5):1459–69.

    Article  CAS  Google Scholar 

  • Liu X, Zhao B, Zheng H-J, Hu Y, Lu G, Yang C-Q, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep. 2015;5(1):1–14.

    Google Scholar 

  • Liu R, Gong J, Xiao X, Zhang Z, Li J, Liu A, et al. GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci. 2018;9:1067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Song C, Ren Z, Zhang Z, Pei X, Liu Y, et al. Genome-wide association study reveals the genetic basis of fiber quality traits in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2020;20(1):395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Curtiss J, Miranda D, Hughs E, Zhang J. ATG-anchored AFLP (ATG-AFLP) analysis in cotton. Plant Cell Rep. 2008;27(10):1645–53.

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Kardos M, Hand B, Rajora O, Aitken S, Hohenlohe P. Population genomics: advancing understanding of nature; 2018.

    Google Scholar 

  • Luikart G, Kardos M, Hand B, Aitken S, Luikart G, Kardos M, et al. Population genomics: advancing understanding of nature: Springer, New York; 2020.

    Google Scholar 

  • Lye ZN, Purugganan MD. Copy number variation in domestication. Trends Plant Sci. 2019;24(4):352–65.

    Article  CAS  PubMed  Google Scholar 

  • Ma Z. Unraveling the puzzle of the origin and evolution of cotton A-genome. J Cotton Res. 2020;3(1):17.

    Article  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet. 2018;50(6):803–13.

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Zhang Y, Wu L, Zhang G, Sun Z, Li Z, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet. 2021;53(9):1385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacMillan CP, Birke H, Chuah A, Brill E, Tsuji Y, Ralph J, et al. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls. BMC Genomics. 2017;18(1):539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Majeed S, Rana IA, Atif RM, Ali Z, Hinze L, Azhar MT. Role of SNPs in determining QTLs for major traits in cotton. J Cotton Res. 2019;2(1):5.

    Article  CAS  Google Scholar 

  • Malik W, Ashraf J, Iqbal MZ, Khan AA, Qayyum A, Ali Abid M, et al. Molecular markers and cotton genetic improvement: current status and future prospects. Sci World J. 2014;2014:607091.

    Article  Google Scholar 

  • May OL, Bowman DT, Calhoun DS. Genetic diversity of U.S. upland cotton cultivars released between 1980 and 1990. Crop Sci. 1995;35(6):cropsci1995.0011183X003500060009x.

    Article  Google Scholar 

  • Mehboob Ur R, Shaheen T, Tabbasam N, Iqbal MA, Ashraf M, Zafar Y, et al. Cotton genetic resources. A review. Agron Sustain Dev. 2012;32(2):419–32.

    Article  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013;14(12):840–52.

    Article  CAS  PubMed  Google Scholar 

  • Moler ERV, Abakir A, Eleftheriou M, Johnson JS, Krutovsky KV, Lewis LC, Ruzov A, Whipple AV, Rajora OP. Population epigenomics: Advancing understanding of phenotypic plasticity, acclimation, adaptation and diseases. In: Rajora OP, editor. Population Genomics: Concepts, Approaches and Applications. Cham: Springer International Publishing; 2019. p. 179–260.

    Google Scholar 

  • Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993;3(1):175–82.

    CAS  PubMed  Google Scholar 

  • Morin PA, Luikart G, Wayne RK, S. N. P. w. g. the. SNPs in ecology, evolution and conservation. Trends Ecol Evol. 2004;19(4):208–16.

    Article  Google Scholar 

  • Mubarik MS, Ma C, Majeed S, Du X, Azhar MT. Revamping of cotton breeding programs for efficient use of genetic resources under changing climate. Agronomy. 2020;10(8):1190.

    Article  CAS  Google Scholar 

  • Murtaza N. Cotton genetic diversity study by AFLP markers. Electron J Biotechnol (ISSN: 0717-3458). 2006;9(4):9.

    Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Florane CB. Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics. 2019;20(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD, Bechere E, Li P, Florane CB. Mapping-by-sequencing the locus of EMS-induced mutation responsible for tufted-fuzzless seed phenotype in cotton. Mol Genet Genomics. 2021;296:1041.

    Article  CAS  PubMed  Google Scholar 

  • Naqvi RZ, Zaidi SS-E-A, Mukhtar MS, Amin I, Mishra B, Strickler S, et al. Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease. PLoS One. 2019;14(2):e0210011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazir MF, Jia Y, Ahmed H, He S, Iqbal MS, Sarfraz Z, et al. Genomic insight into differentiation and selection sweeps in the improvement of upland cotton. Plants. 2020;9(6):711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie X, Huang C, You C, Li W, Zhao W, Shen C, et al. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics. 2016;17(1):352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niles GA, Feaster CV. Breeding. In: Cotton. Madison: American Society of Agronomy; 1984. p. 201–31.

    Google Scholar 

  • Niu C, Hinchliff D, Cantrell R, Wang C, Roberts P, Zhang J. Identification of molecular markers associated with Root-Knot Nematode resistance in upland cotton. Crop Sci. 2007;47:951–60.

    Article  CAS  Google Scholar 

  • Niu C, Lu Y, Yuan Y, Percy R, Ulloa M, Zhang J. Mapping resistance gene analogs (RGAs) in cultivated tetraploid cotton using RGA-AFLP analysis. Euphytica. 2011;181:65–76.

    Article  Google Scholar 

  • Noormohammadi Z, Rahnama A, Sheidai M. EST-SSR and SSR analyses of genetic diversity in diploid cotton genotypes from Iran. Nucleus. 2013;56(3):171–8.

    Article  Google Scholar 

  • Nuzhdin SV, Friesen ML, McIntyre LM. Genotype–phenotype mapping in a post-GWAS world. Trends Genet. 2012;28(9):421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osabe K, Clement JD, Bedon F, Pettolino FA, Ziolkowski L, Llewellyn DJ, et al. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues. PLoS One. 2014;9(1):e86049.

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131(3):452–62.

    Article  CAS  PubMed  Google Scholar 

  • Page JT, Huynh MD, Liechty ZS, Grupp K, Stelly D, Hulse AM, et al. Insights into the evolution of cotton diploids and polyploids from whole-genome re-sequencing. G3 (Bethesda, Md). 2013;3(10):1809–18.

    Article  PubMed  Google Scholar 

  • Palanga KK, Jamshed M, Rashid MHO, Gong J, Li J, Iqbal MS, et al. Quantitative trait locus mapping for Verticillium wilt resistance in an upland cotton recombinant inbred line using SNP-based high density genetic map. Front Plant Sci. 2017;8:382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Meng F, Wang X. Sequencing multiple cotton genomes reveals complex structures and lays foundation for breeding. Front Plant Sci. 2020;11(1377):560096.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature. 2012;492(7429):423–7.

    Article  CAS  PubMed  Google Scholar 

  • Percy RG, Frelichowski JE, Arnold MD, Campbell TB, Dever JK, Fang DD, et al. The U.S. National Cotton Germplasm Collection – its contents, preservation, characterization, and evaluation. In: World cotton germplasm resources; 2014.

    Google Scholar 

  • Pillay M, Myers GO. Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Sci. 1999;39(6):1881–6.

    Article  CAS  Google Scholar 

  • Piperno DR. Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research. Proc Natl Acad Sci. 2017;114(25):6429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad P, Khatoon U, Verma RK, Kumar A, Mohapatra D, Bhattacharya P, et al. Unravelling cotton RNAseq repositories to the fiber development specific modules and their alliance with the fiber-related traits. bioRxiv. 2021; 2021.2002.2013.431059

    Google Scholar 

  • Qin Y, Sun H, Hao P, Wang H, Wang C, Ma L, et al. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines. BMC Genomics. 2019;20(1):633.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajora OPE. Population genomics: concepts, approaches and application: ebook. Springer Link, New York; 2019.

    Google Scholar 

  • Rana MK, Bhat KV. A comparison of AFLP and RAPD markers for genetic diversity and cultivar identification in cotton. J Plant Biochem Biotechnol. 2004;13(1):19–24.

    Article  CAS  Google Scholar 

  • Rana MK, Singh VP, Bhat KV. Assessment of genetic diversity in upland cotton (Gossypium hirsutum L.) breeding lines by using amplified fragment length polymorphism (AFLP) markers and morphological characteristics. Genetic Resour Crop Evol. 2005;52(8):989–97.

    Article  CAS  Google Scholar 

  • Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol. 2010;8(1):1–15.

    Article  Google Scholar 

  • Raszick TJ, Dickens CM, Perkin LC, Tessnow AE, Suh CP-C, Ruiz-Arce R, et al. Population genomics and phylogeography of the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in the United States, northern Mexico, and Argentina. Evol Appl. 2021;14(7):1778–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics. 1994;138(3):829–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renny-Byfield S, Page JT, Udall JA, Sanders WS, Peterson DG, Arick MA 2nd, et al. Independent domestication of two Old World cotton species. Genome Biol Evol. 2016;8(6):1940–7.

    Google Scholar 

  • Rohr JPBV. Anmerkungen über den Cattunbau [electronic resource] : zum Nuzen [sic] der dänischen westindischen Colonien auf allerhöchsten königlichen Befehl geschrieben / von Julius Philip Benjamin von Rohr ; mit einer Vorrede von Herrn D. Philipp Gabriel Hensler. Altona ; Leipzig, Bey Johann Friedrich Hammerich, 1791.

    Google Scholar 

  • Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics. 2004;166(1):389–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said J, Lin ZX, Zhang X, Song M, Zhang J. Comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics. 2013;14:776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Knapka JA, Song M, Zhang J. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics. 2015;290(4):1615–25.

    Article  CAS  PubMed  Google Scholar 

  • Saïdou A-A, Thuillet A-C, Couderc M, Mariac C, Vigouroux Y. Association studies including genotype by environment interactions: prospects and limits. BMC Genet. 2014;15(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH. Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res. 2001;11(12):1988–95.

    Article  CAS  PubMed  Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC, Liu B, Rong J, Noyes RD, et al. Rate variation among nuclear genes and the age of polyploidy in gossypium. Mol Biol Evol. 2003;20(4):633–43.

    Article  CAS  PubMed  Google Scholar 

  • Seyoum M, Du XM, He SP, Jia YH, Pan Z, Sun JL. Analysis of genetic diversity and population structure in upland cotton (Gossypium hirsutum L.) germplasm using simple sequence repeats. J Genet. 2018;97(2):513–22.

    Article  CAS  PubMed  Google Scholar 

  • Shaheen T, Zafar Y, Rahman M-U. Phylogenetic analysis of cotton species (Diploid genomes) using single nucleotide polymorphisms (SNPs) markers. Pakistan J Agric Sci. 2016;53:283–90.

    Google Scholar 

  • Shan D-P, Huang J-G, Yang Y-T, Guo Y-H, Wu C-A, Yang G-D, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol. 2007;176(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  • Shan C-M, Shangguan X-X, Zhao B, Zhang X-F, Chao L-M, Yang C-Q, et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun. 2014;5(1):5519.

    Article  CAS  PubMed  Google Scholar 

  • Shappley ZW, Jenkins JN, Zhu J, McCarty JC. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton. 1998;2:153.

    CAS  Google Scholar 

  • Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z, et al. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 2018;19(1):128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen C, Wang N, Huang C, Wang M, Zhang X, Lin Z. Population genomics reveals a fine-scale recombination landscape for genetic improvement of cotton. Plant J. 2019;99(3):494–505.

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Zhang T, Stelly DM, Chen ZJ. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol. 2017;18(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strygina K, Khlestkina E, Podolnaya L. Cotton genome evolution and features of its structural and functional organization. Biol Commun. 2020;65(1):15–27.

    Article  Google Scholar 

  • Su J, Li L, Pang C, Wei H, Wang C, Song M, et al. Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Sci Rep. 2016;6(1):38496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Li L, Zhang C, Wang C, Gu L, Wang H, et al. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet. 2018;131(6):1299–314.

    Article  CAS  PubMed  Google Scholar 

  • Sun F-D, Zhang J-H, Wang S-F, Gong W-K, Shi Y-Z, Liu A-Y, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed. 2012;30(1):569–82.

    Article  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, et al. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J. 2017;15(8):982–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Meng M, Yan Z, Lin Z, Nie X, Yang X. Genome-wide association mapping of stress-tolerance traits in cotton. Crop J. 2019;7(1):77–88.

    Article  Google Scholar 

  • Suzuki H, Rodriguez-Uribe L, Xu J, Zhang J. Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton. Plant Cell Rep. 2013;32(10):1531–42.

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Zhang Z, Sun X, Li Q, Sun Y, Yang P, et al. Genetic map construction and fiber quality QTL mapping using the cottonSNP80K array in upland cotton. Front Plant Sci. 2018;9:225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang S, Teng Z, Zhai T, Fang X, Liu F, Liu D, et al. Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L.). Euphytica. 2015;201(2):195–213.

    Article  CAS  Google Scholar 

  • Tao Y, Zhao X, Mace E, Henry R, Jordan D. Exploring and exploiting pan-genomics for crop improvement. Mol Plant. 2019;12(2):156–69.

    Article  CAS  PubMed  Google Scholar 

  • Tatineni V, Cantrell RG, Davis DD. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci. 1996;36(1):cropsci1996.0011183X003600010033x.

    Article  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial pan-genome. Proc Natl Acad Sci. 2005;102(39):13950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaro DG. Relazione Sulla Cultura Dei Cotoni in Italia, Seguita Da Una Monografia Del Genere Gossypium. Roma Palermo: Stamperia Reale Ditta P. A. Molina Cromo-litografia Visconti; 1877.

    Google Scholar 

  • Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor Appl Genet. 2014;127(2):283–95.

    Article  PubMed  Google Scholar 

  • Udall JA, Swanson JM, Haller K, Rapp RA, Sparks ME, Hatfield J, et al. A global assembly of cotton ESTs. Genome Res. 2006;16(3):441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Udall JA, Long E, Hanson C, Yuan D, Ramaraj T, Conover JL, et al. De Novo genome sequence assemblies of Gossypium raimondii and Gossypium turneri. G3 Genes|Genomes|Genetics. 2019;9(10):3079–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa M, Abdurakhmonov IY, Perez-M C, Percy R, Stewart JM. Genetic diversity and population structure of cotton (Gossypium spp.) of the New World assessed by SSR markers. Botany. 2013;91(4):251–9.

    Article  CAS  Google Scholar 

  • Ulloa M, Hulse-Kemp AM, De Santiago LM, Stelly DM, Burke JJ. Insights into upland cotton (Gossypium hirsutum L.) genetic recombination based on 3 high-density single-nucleotide polymorphism and a consensus map developed independently with common parents. Genomics Insights. 2017;10:1178631017735104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulloa M, De Santiago LM, Hulse-Kemp AM, Stelly DM, Burke JJ. Enhancing Upland cotton for drought resilience, productivity, and fiber quality: comparative evaluation and genetic dissection. Mol Genet Genomics. 2020;295(1):155–76.

    Article  CAS  PubMed  Google Scholar 

  • Van Deynze A, Stoffel K, Lee M, Wilkins TA, Kozik A, Cantrell RG, et al. Sampling nucleotide diversity in cotton. BMC Plant Biol. 2009;9(1):125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Velázquez-López R, Wegier A, Alavez V, Pérez-López J, Vázquez-Barrios V, Arroyo-Lambaer D, et al. The mating system of the wild-to-domesticated complex of Gossypium hirsutum L. Is mixed. Front Plant Sci. 2018;9:574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vroh Bi I, Maquet A, Baudoin JP, du Jardin P, Jacquemin JM, Mergeai G. Breeding for “low-gossypol seed and high-gossypol plants” in upland cotton. Analysis of tri-species hybrids and backcross progenies using AFLPs and mapped RFLPs. Theor Appl Genet. 1999;99(7):1233–44.

    Article  Google Scholar 

  • Wambugu PW, Ndjiondjop M-N, Henry RJ. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct Genomics. 2018;17(3):198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B-H, Wu Y-T, Huang N-T, Zhu X-F, Guo W-Z, Zhang T-Z. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. Acta Genetica Sinica. 2006;33(2):161–70.

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44(10):1098–103.

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wendel JF, Hua J. Designations for individual genomes and chromosomes in Gossypium. J Cotton Res. 2018;1(1):1–5.

    Google Scholar 

  • Wang Z, Zhang D, Wang X, Tan X, Guo H, Paterson AH. A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L. G3 (Bethesda, Md). 2013;3(10):1759–67.

    Article  PubMed  Google Scholar 

  • Wang H, Jin X, Zhang B, Shen C, Lin Z. Enrichment of an intraspecific genetic map of upland cotton by developing markers using parental RAD sequencing. DNA Res. 2015;22(2):147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun. 2016a;7:11708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Mu M, Wang S, Lu X, Chen X, Wang D, et al. Molecular clone and expression of GhDHN1 gene in cotton (Gossypium hirsutum L.). Scientia Agricultura Sinica. 2016b;49(15):2867–78.

    CAS  Google Scholar 

  • Wang K, Huang G, Zhu Y. Transposable elements play an important role during cotton genome evolution and fiber cell development. Sci China Life Sci. 2016c;59(2):112–21.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet. 2017;49(4):579–87.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang P, Liang F, Ye Z, Li J, Shen C, et al. A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation. New Phytol. 2018;217(1):163–78.

    Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51(2):224–9.

    Article  PubMed  Google Scholar 

  • Wang H, Zhang R, Shen C, Li X, Zhu D, Lin Z. Transcriptome and QTL analyses reveal candidate genes for fiber quality in Upland cotton. Crop J. 2020;8(1):98–106.

    Article  Google Scholar 

  • Wang P, He S, Sun G, Pan Z, Sun J, Geng X, et al. Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum). Sci Rep. 2021;11(1):15935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang Z, Gong Z, Liang Y, Ai X, Sang Z, et al. Analysis of the genetic structure and diversity of upland cotton groups in different planting areas based on SNP markers. Gene. 2022;809:146042.

    Article  CAS  PubMed  Google Scholar 

  • Ware J, Benedict L, Rolfe W. A recessive naked-seed character in upland cotton. J Hered. 1947;38(10):313–20.

    CAS  PubMed  Google Scholar 

  • Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai X, et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One. 2017;12(5):e0178313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Colot V. Epialleles in plant evolution. Genome Biol. 2012;13(10):249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF. New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci. 1989;86(11):4132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Albert VA. Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Botany. 1992;17(1):115–43.

    Article  Google Scholar 

  • Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton. Adv Agronom, Academic Press. 2003;78:139–86.

    Article  Google Scholar 

  • Wendel JF, Olson PD, Stewart JM. Genetic diversity, introgression, and independent domestication of Old World cultivated cottons. Am J Bot. 1989;76(12):1795–806.

    Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE. Genetic diversity in Gossypium Hirsutum and the origin of upland cotton. Am J Bot. 1992;79(11):1291–310.

    Article  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci U S A. 1995;92(1):280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM. Evolution and natural history of the cotton genus. In: Genetics and genomics of cotton. Springer, New York; 2009. p. 3–22.

    Google Scholar 

  • Wendel JF, Lisch D, Hu G, Mason AS. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev. 2018;49:1–7.

    Google Scholar 

  • Westengen OT, Huamán Z, Heun M. Genetic diversity and geographic pattern in early South American cotton domestication. Theor Appl Genet. 2005;110(2):392–402.

    Article  PubMed  Google Scholar 

  • Wright R, Thaxton P, El-Zik K, Paterson A. Molecular mapping of genes affecting pubescence of cotton. J Hered. 1999;90(1):215–9.

    Article  CAS  Google Scholar 

  • Wu J, Jenkins JN, McCarty JC, Zhong M, Swindle M. AFLP marker associations with agronomic and fiber traits in cotton. Euphytica. 2007;153(1):153–63.

    Article  CAS  Google Scholar 

  • Wu H, Zhang J, Shi J, Fan Z, Aliyan R, Zhang P, et al. Physiological responses of cotton seedlings under low temperature stress. Acta Botanica Boreali-Occidentalia Sinica. 2013;33(1):74–82.

    CAS  Google Scholar 

  • Wu Z, Yang Y, Huang G, Lin J, Xia Y, Zhu Y. Cotton functional genomics reveals global insight into genome evolution and fiber development. J Genet Genomics. 2017;44(11):511–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Yu J, Kohel RJ, Percy RG, Beavis WD, Main D, et al. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome. Genomics. 2015;106(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Magwanga RO, Jin D, Cai X, Hou Y, Juyun Z, et al. Comparative transcriptome analysis reveals evolutionary divergence and shared network of cold and salt stress response in diploid D-genome cotton. BMC Plant Biol. 2020;20(1):518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, et al. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun. 2019;10(1):1–13.

    Google Scholar 

  • Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium genomics: trends, scope, and utilization for cotton improvement. Trends Plant Sci. 2020;25(5):488–500.

    Article  CAS  PubMed  Google Scholar 

  • Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P-C, Hu L, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet. 2016;48(8):927–34.

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Zhan R, He Y, Song S, Wang L, Ge Y, Chen D. Morphological description of a novel synthetic allotetraploid (A1A1G3G3) of Gossypium herbaceum L. and G. nelsonii Fryx. suitable for disease-resistant breeding applications. PLoS One. 2020;15(12): e0242620.

    Google Scholar 

  • Yoo MJ, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet. 2014;10(1):e1004073.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu JZ, Fang DD, Kohel RJ, Ulloa M, Hinze LL, Percy RG, et al. Development of a core set of SSR markers for the characterization of Gossypium germplasm. Euphytica. 2012;187(2):203–13.

    Article  CAS  Google Scholar 

  • Yuan D, Tang Z, Wang M, Gao W, Tu L, Jin X, et al. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep. 2015;5:17662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan D, Grover CE, Hu G, Pan M, Miller ER, Conover JL, et al. Parallel and intertwining threads of domestication in allopolyploid cotton. Adv Sci. 2021;8(10):2003634.

    Article  Google Scholar 

  • Zahn LM. Unraveling the origin of cotton. Science. 2012;335(6073):1148.

    Article  Google Scholar 

  • Zhang J, Lu Y, Yu S. Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for cotton. Theor Appl Genet. 2005a;111(7):1385–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-S, Xiao Y-H, Luo M, Li X-B, Luo X-Y, Hou L, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica. 2005b;144(1):91–9.

    Article  CAS  Google Scholar 

  • Zhang M, Rong Y, Lee MK, Zhang Y, Stelly DM, Zhang HB. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences. Mol Genet Genomics. 2015a;290(5):1859–72.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015b;33(5):531–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhang H, Liu K, Jian G, Qi F, Si N. Large-scale identification of Gossypium hirsutum genes associated with Verticillium dahliae by comparative transcriptomic and reverse genetics analysis. PLoS One. 2017;12(8):e0181609.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Cai Y, Guo J, Li K, Peng R, Liu F, et al. Genotyping-by-sequencing of Gossypium hirsutum races and cultivars uncovers novel patterns of genetic relationships and domestication footprints. Evol Bioinform Online. 2019;15:1176934319889948.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yang N, Zhao L, Zhu H, Tang C. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC Plant Biol. 2020;20(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Mei H, Lu H, Chen R, Hu Y, Zhang T. Transcriptome time-course analysis in the whole period of cotton fiber development. Front Plant Sci. 2022;13:864529.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yu S, Xing C, Fan S, Song M. Analysis of DNA methylation in cotton hybrids and their parents. Mol Biol. 2008;42(2):169.

    Article  CAS  Google Scholar 

  • Zhao Y-L, Yu S-X, Ye W-W, Wang H-M, Wang J-J, Fang B-X. Study on DNA cytosine methylation of cotton (Gossypium hirsutum L.) genome and its implication for salt tolerance. Agric Sci China. 2010;9(6):783–91.

    Article  CAS  Google Scholar 

  • Zhao D, Ferguson AA, Jiang N. What makes up plant genomes: the vanishing line between transposable elements and genes. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2016;1859(2):366–80.

    Article  CAS  PubMed  Google Scholar 

  • Zheng JY, Oluoch G, Riaz Khan MK, Wang XX, Cai XY, Zhou ZL, et al. Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. Genet Mol Res. 2016;15 https://doi.org/10.4238/gmr.15038477.

  • Zhou J, Li D, Wang G, Wang F, Kunjal M, Joldersma D, et al. Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. J Integr Plant Biol. 2020;62(3):269–86.

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, et al. Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC Plant Biol. 2020;20(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venugopal Mendu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendu, L., Ghose, K., Mendu, V. (2022). Population Genomics of Cotton. In: Rajora, O.P. (eds) Population Genomics: Crop Plants. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2022_105

Download citation

Publish with us

Policies and ethics