Skip to main content

Rheology, Mechanical Properties, and Barrier Properties of Poly(lactic acid)

  • Chapter
  • First Online:
Synthesis, Structure and Properties of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 279))

Abstract

Knowledge of the fundamental parameters of the poly(lactic acid) (PLA) molecular chain and resulting macroscopic properties is important for successful application of this polymer in different domains. Rheological data show that PLA has the typical properties of a linear and semi-stiff polymer chain. The stereochemical composition of the atactic polymer chain does not impact the rheological, mechanical, and barrier properties of PLA. Most commercial PLA grades contain a large majority of l-lactic acid units, in which case the polymer is named PLLA. PLLA at room temperature is a brittle glassy polymer and its main fracture mechanism is crazing. Above the glass transition, semicrystalline PLLA shows extensive cavitation. Uniaxial deformation above, but near, the glass transition temperature leads to the formation of a mesophase, responsible for strain hardening. At higher temperatures, strain hardening is caused by induced crystallization. The PLLA oxygen barrier properties are comparable to those of polystyrene (PS). The water vapor barrier properties are higher than those of PS because of the higher polarity of the polymer chain. An increase in barrier properties can be obtained by specific crystallization techniques, multilayer strategies, or the addition of (nano)fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  2. Dorgan JR, Janzen J, Knauss DM, Hait SB, Limoges BR, Hutchinson MH (2005) Fundamental solution and single-chain properties of polylactides. J Polym Sci B Polym Phys 43(21):3100–3111. doi:10.1002/polb.20577

    Article  CAS  Google Scholar 

  3. Chile L-E, Mehrkhodavandi P, Hatzikiriakos SG (2016) A comparison of the rheological and mechanical properties of isotactic, syndiotactic, and heterotactic poly(lactide). Macromolecules 49(3):909–919. doi:10.1021/acs.macromol.5b02568

    Article  CAS  Google Scholar 

  4. Kim ES, Kim BC, Kim SH (2004) Structural effect of linear and star-shaped poly(L-lactic acid) on physical properties. J Polym Sci B Polym Phys 42(6):939–946. doi:10.1002/polb.10685

    Article  CAS  Google Scholar 

  5. Othman N, Jazrawi B, Mehrkhodavandi P, Hatzikiriakos SG (2012) Wall slip and melt fracture of poly(lactides). Rheol Acta 51(4):357–369. doi:10.1007/s00397-011-0613-7

    Article  CAS  Google Scholar 

  6. Othman N, Acosta-Ramirez A, Mehrkhodavandi P, Dorgan JR, Hatzikiriakos SG (2011) Solution and melt viscoelastic properties of controlled microstructure poly(lactide). J Rheol 55(5):987–1005. doi:10.1122/1.3609853

    Article  CAS  Google Scholar 

  7. Palade LI, Lehermeier HJ, Dorgan JR (2001) Melt rheology of high L-content poly(lactic acid). Macromolecules 34(5):1384–1390. doi:10.1021/ma001173b

    Article  CAS  Google Scholar 

  8. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers, 4th edn. Elsevier, Amsterdam. doi:10.1016/B978-0-08-054819-7.00001-7

  9. Dorgan JR, Williams JS, Lewis DN (1999) Melt rheology of poly(lactic acid): Entanglement and chain architecture effects. J Rheol 43(5):1141–1155. doi:10.1122/1.551041

    Article  CAS  Google Scholar 

  10. Grijpma DW, Penning JP, Pennings AJ (1994) Chain entanglement, mechanical-properties and drawability of poly(lactide). Colloid Polym Sci 272(9):1068–1081. doi:10.1007/bf00652375

    Article  CAS  Google Scholar 

  11. Dorgan JR, Janzen J, Clayton MP, Hait SB, Knauss DM (2005) Melt rheology of variable L-content poly(lactic acid). J Rheol 49(3):607–619. doi:10.1122/1.1896957

    Article  CAS  Google Scholar 

  12. Blomqvist J (2001) RIS metropolis Monte Carlo studies of poly(L-lactic), poly(L,D-lactic) and polyglycolic acids. Polymer 42(8):3515–3521. doi:10.1016/s0032-3861(00)00704-7

    Article  CAS  Google Scholar 

  13. Fang Q, Hanna MA (1999) Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crop Prod 10(1):47–53. doi:10.1016/s0926-6690(99)00009-6

    Article  CAS  Google Scholar 

  14. Dean KM, Petinakis E, Meure S, Yu L, Chryss A (2012) Melt strength and rheological properties of biodegradable poly(lactic acid) modified via alkyl radical-based reactive extrusion processes. J Polym Environ 20(3):741–747. doi:10.1007/s10924-012-0461-2

    Article  CAS  Google Scholar 

  15. Zhang JL, Li G, Su YZ, Qi RR, Ye DD, Yu J, Huang SW (2012) High-viscosity polylactide prepared by in situ reaction of carboxyl-ended polyester and solid epoxy. J Appl Polym Sci 123(5):2996–3006. doi:10.1002/app.34951

    Article  CAS  Google Scholar 

  16. Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8(1):1–9. doi:10.1023/a:1010185910301

    Article  Google Scholar 

  17. Al-Itry R, Lamnawar K, Maazouz A (2015) Biopolymer blends based on poly (lactic acid): shear and elongation rheology/structure/blowing process relationships. Polymers 7(5):939–962. doi:10.3390/polym7050939

    Article  CAS  Google Scholar 

  18. Schneider J, Manjure S, Narayan R (2016) Reactive modification and compatibilization of poly(lactide) and poly(butylene adipate-co-terephthalate) blends with epoxy functionalized-poly(lactide) for blown film applications. J Appl Polym Sci 133(16):43310. doi:10.1002/app.43310

    Article  CAS  Google Scholar 

  19. Wang LY, Jing XB, Cheng HB, Hu XL, Yang LX, Huang YB (2012) Rheology and crystallization of long-chain branched poly(L-lactide)s with controlled branch length. Ind Eng Chem Res 51(33):10731–10741. doi:10.1021/ie300524j

    Article  CAS  Google Scholar 

  20. Ma PM, Shen TF, Xu PW, Dong WF, Lemstra PJ, Chen MQ (2015) Superior performance of fully biobased poly(lactide) via stereocomplexation-induced phase separation: structure versus property. ACS Sustain Chem Eng 3(7):1470–1478. doi:10.1021/acssuschemeng.5b00208

    Article  CAS  Google Scholar 

  21. Zhang X, Schneider K, Liu G, Chen J, Brüning K, Wang D, Stamm M (2012) Deformation-mediated superstructures and cavitation of poly (L-lactide): in-situ small-angle X-ray scattering study. Polymer 53(2):648–656. doi:10.1016/j.polymer.2011.12.002

    Article  CAS  Google Scholar 

  22. Pawlak A, Galeski A, Rozanski A (2014) Cavitation during deformation of semicrystalline polymers. Prog Polym Sci 39(5):921–958. doi:10.1016/j.progpolymsci.2013.10.007

    Article  CAS  Google Scholar 

  23. Stoclet G, Seguela R, Lefebvre JM, Elkoun S, Vanmansart C (2010) Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 43(3):1488–1498. doi:10.1021/ma9024366

    Article  CAS  Google Scholar 

  24. Mulligan J, Cakmak M (2005) Nonlinear mechanooptical behavior of uniaxially stretched poly(lactic acid): dynamic phase behavior. Macromolecules 38(6):2333–2344

    Article  CAS  Google Scholar 

  25. Stoclet G, Seguela R, Lefebvre JM, Li S, Vert M (2011) Thermal and strain-induced chain ordering in lactic acid stereocopolymers: influence of the composition in stereomers. Macromolecules 44(12):4961–4969. doi:10.1021/ma200469t

    Article  CAS  Google Scholar 

  26. Stoclet G, Lefebvre JM, Seguela R, Vanmansart C (2014) In-situ SAXS study of the plastic deformation behavior of polylactide upon cold-drawing. Polymer 55(7):1817–1828. doi:10.1016/j.polymer.2014.02.010

    Article  CAS  Google Scholar 

  27. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46(23):10290–10300. doi:10.1016/j.polymer.2005.07.101

    Article  CAS  Google Scholar 

  28. Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28(12):1643–1699. doi:10.1016/j.progpolymsci.2003.09.003

    Article  CAS  Google Scholar 

  29. Kramer EJ (1984) Craze fibril formation and breakdown. Polym Eng Sci 24(10):761–769. doi:10.1002/pen.760241006

    Article  CAS  Google Scholar 

  30. Pan PJ, Zhu B, Inoue Y (2007) Enthalpy relaxation and embrittlement of poly(L-lactide) during physical aging. Macromolecules 40(26):9664–9671. doi:10.1021/ma071737c

    Article  CAS  Google Scholar 

  31. Ruellan A (2015) Conception raisonée à l’aide de la formulation et du procédé d’un film souple biosourcé et biodégradable pour l’emballage alimentaire. Université Paris-Saclay–ParisTech, Maassy

    Google Scholar 

  32. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(l-lactide) with poly(propylene glycol). Biomacromolecules 7(7):2128–2135

    Article  CAS  Google Scholar 

  33. Courgneau C, Domenek S, Lebosse R, Guinault A, Averous L, Ducruet V (2012) Effect of crystallization on barrier properties of formulated polylactide. Polym Int 61(2):180–189. doi:10.1002/pi.3167

    Article  CAS  Google Scholar 

  34. Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59(1):37–43. doi:10.1002/(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N

    Article  CAS  Google Scholar 

  35. Renouf-Glauser AC, Rose J, Farrar DF, Cameron RE (2005) The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Biomaterials 26(29):5771–5782. doi:10.1016/j.biomaterials.2005.03.002

    Article  CAS  Google Scholar 

  36. Cocca M, Di Lorenzo ML, Malinconico M, Frezza V (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(L-lactic acid). Eur Polym J 47:1073–1080

    Article  CAS  Google Scholar 

  37. Corbion. PLA polymers. http://www.corbion.com/bioplastics/products/pla-polymers. Accessed 28 April 2016

  38. NatureWorks (2016) Food and beverage packaging. http://www.natureworksllc.com/Product-and-Applications/Films

  39. Ruellan A, Ducruet V, Gratia A, Saelices Jimenez L, Guinault A, Sollogoub C, Chollet G, Domenek S (2016) Palm oil deodorizer distillate as toughening agent in polylactide packaging films. Polym Int 65(6):683–690. doi:10.1002/pi.5114

    Article  CAS  Google Scholar 

  40. Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semi-cristalline poly(L-lactide) with poly(propylene glycol). Polymer 47(20):7178–7188

    Article  CAS  Google Scholar 

  41. Courgneau C, Domenek S, Guinault A, Averous L, Ducruet V (2011) Analysis of the structure-properties relationships of different multiphase systems based on plasticized poly(lactic acid). J Polym Environ 19(2):362–371. doi:10.1007/s10924-011-0285-5

    Article  CAS  Google Scholar 

  42. Ruellan A, Guinault A, Sollogoub C, Chollet G, Ait-Mada A, Ducruet V, Domenek S (2015) Industrial vegetable oil by-products increase the ductility of polylactide. Express Polym Lett 9(12):1087–1103. doi:10.3144/expresspolymlett.2015.98

    Article  CAS  Google Scholar 

  43. Brandrup J, Immergut EH, Grulke EA (2003) Polymer handbook, 4th edn. Wiley-Interscience, Hoboken

    Google Scholar 

  44. Strapasson R, Amico SC, Pereira MFR, Sydenstricker THD (2005) Tensile and impact behavior of polypropylene/low density polyethylene blends. Polym Test 24(4):468–473. doi:10.1016/j.polymertesting.2005.01.001

    Article  CAS  Google Scholar 

  45. Baltieri RC, Mei LHI, Bartoli J (2003) Study of the influence of plasticizers on the thermal and mechanical properties of poly(3-hydroxybutyrate) compounds. Macromol Symp 197:33–44

    Article  CAS  Google Scholar 

  46. Auras RA, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plast Film Sheet 19(2):123–135

    Article  CAS  Google Scholar 

  47. Ou X, Cakmak M (2010) Comparative study on development of structural hierarchy in constrained annealed simultaneous and sequential biaxially stretched polylactic acid films. Polymer 51(3):783–792. doi:10.1016/j.polymer.2009.11.058

    Article  CAS  Google Scholar 

  48. Smith PB, Leugers A, Kang SH, Hsu SL, Yang XZ (2001) An analysis of the correlation between structural anisotropy and dimensional stability for drawn poly(lactic acid) films. J Appl Polym Sci 82(10):2497–2505. doi:10.1002/app.2100

    Article  CAS  Google Scholar 

  49. Tsai CC, Wu RJ, Cheng HY, Li SC, Siao YY, Kong DC, Jang GW (2010) Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films. Polym Degrad Stab 95(8):1292–1298. doi:10.1016/j.polymdegradstab.2010.02.032

    Article  CAS  Google Scholar 

  50. Delpouve N, Stoclet G, Saiter A, Dargent E, Marais S (2012) Water barrier properties in biaxially drawn poly(lactic acid) films. J Phys Chem B 116(15):4615–4625. doi:10.1021/jp211670g

    Article  CAS  Google Scholar 

  51. Ou X, Cakmak M (2008) Influence of biaxial stretching mode on the crystalline texture in polylactic acid films. Polymer 49:5344–5352

    Article  CAS  Google Scholar 

  52. Jariyasakoolroj P, Tashiro K, Wang H, Yamamoto H, Chinsirikul W, Kerddonfag N, Chirachanchai S (2015) Isotropically small crystalline lamellae induced by high biaxial-stretching rate as a key microstructure for super-tough polylactide film. Polymer 68:234–245. doi:10.1016/j.polymer.2015.05.006

    Article  CAS  Google Scholar 

  53. Ruellan A, Ducruet V, Domenek S (2015) Plasticization of poly(lactide). In: Jiménez A, Peltzer M, Ruseckaite RA (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, London, pp. 124–170. doi:10.1039/9781782624806-00124

    Google Scholar 

  54. Liu HZ, Zhang JW (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci B Polym Phys 49(15):1051–1083. doi:10.1002/polb.22283

    Article  CAS  Google Scholar 

  55. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 44:5681–5689

    Article  CAS  Google Scholar 

  56. Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505

    Article  CAS  Google Scholar 

  57. Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39(7):1303–1310. doi:10.1002/pen.11517

    Article  CAS  Google Scholar 

  58. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  59. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(L-lactic acid). J Appl Polym Sci 90(7):1731–1738. doi:10.1002/app.12549

    Article  CAS  Google Scholar 

  60. Pillin I, Montrelay N, Grohens Y (2006) Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor? Polymer 47(13):4676–4682

    Article  CAS  Google Scholar 

  61. Ruellan A, Guinault A, Sollogoub C, Ducruet V, Domenek S (2015) Solubility factors as screening tools of biodegradable toughening agents of polylactide. J Appl Polym Sci 132:42476. doi:10.1002/APP.42476

    Article  CAS  Google Scholar 

  62. Ljungberg N, Andersson T, Wesslén B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci 88:3239–3247

    Article  CAS  Google Scholar 

  63. Labrecque LV, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513

    Article  CAS  Google Scholar 

  64. Yu J, Wang N, Ma X (2008) Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites. Biomacromolecules 9(3):1050–1057

    Article  CAS  Google Scholar 

  65. Murariu M, Ferreira ADS, Alexandre M, Dubois P (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19:636–646

    Article  CAS  Google Scholar 

  66. Ali F, Chang Y-W, Kang SC, Yoon JY (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98. doi:10.1007/s00289-008-1012-9

    Article  CAS  Google Scholar 

  67. Xu YQ, Qu JP (2009) Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). J Appl Polym Sci 112(6):3185–3191. doi:10.1002/app.29797

    Article  CAS  Google Scholar 

  68. Xiong Z, Yang Y, Feng J, Zhang X, Zhang C, Tang Z, Zhu J (2012) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydr Polym 92(1):810–816. doi:10.1016/j.carbpol.2012.09.007

    Article  CAS  Google Scholar 

  69. Al-Mulla EAJ, Yunus W, Ibrahim NAB, Ab Rahman MZ (2010) Properties of epoxidized palm oil plasticized polytlactic acid. J Mater Sci 45(7):1942–1946. doi:10.1007/s10853-009-4185-1

    Article  CAS  Google Scholar 

  70. Silverajah VSG, Ibrahim NA, Zainuddin N, Yunus W, Abu Hassan H (2012) Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules 17(10):11729–11747. doi:10.3390/molecules171011729

    Article  CAS  Google Scholar 

  71. Silverajah VSG, Ibrahim NA, Yunus W, Abu Hassan H, Woei CB (2012) A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend. Int J Mol Sci 13(5):5878–5898. doi:10.3390/ijms13055878

    Article  CAS  Google Scholar 

  72. Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48(1):85–108. doi:10.1080/15583720701834216

    Article  CAS  Google Scholar 

  73. Boufarguine M, Guinault A, Miquelard-Garnier G, Sollogoub C (2013) PLA/PHBV films with improved mechanical and gas barrier properties. Macromol Mater Eng 298(10):1065–1073. doi:10.1002/mame.201200285

    CAS  Google Scholar 

  74. Raquez JM, Ramy-Ratiarison R, Murariu M, Dubois P (2015) Reactive extrustion of PLA-based materials: from synthesis to reactive melt-blending. In: Poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, London, pp. 101–123. doi:10.1039/9781782624806-00124

    Google Scholar 

  75. Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly(lactide): chemical grafting of citrate on PLA by reactive extrusion. Eur Polym J 48(2):404–415. doi:10.1016/j.eurpolymj.2011.12.001

    Article  CAS  Google Scholar 

  76. Vadori R, Misra M, Mohanty AK (2016) Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene. J Appl Polym Sci 133(45):43771. doi:10.1002/app.43771

    Article  CAS  Google Scholar 

  77. Hashima K, Nishitsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51(17):3934–3939. doi:10.1016/j.polymer.2010.06.045

    Article  CAS  Google Scholar 

  78. Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y, Luo Y, Peng Z (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des 45:198–205. doi:10.1016/j.matdes.2012.09.024

    Article  CAS  Google Scholar 

  79. Bouzouita A, Samuel C, Notta-Cuvier D, Odent J, Lauro F, Dubois P, Raquez JM (2016) Design of highly tough poly(l-lactide)-based ternary blends for automotive applications. J Appl Polym Sci 133(19):43402. doi:10.1002/app.43402

    Article  CAS  Google Scholar 

  80. Taib RM, Ghaleb ZA, Mohd Ishak ZA (2012) Thermal, mechanical, and morphological properties of polylactic acid toughened with an impact modifier. J Appl Polym Sci 123(5):2715–2725. doi:10.1002/app.34884

    Article  CAS  Google Scholar 

  81. Lemmouchi Y, Murariu M, Dos Santos AM, Amass AJ, Schacht E, Dubois P (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(D,L-lactide)-b-poly(ethylene glycol) copolymers. Eur Polym J 45(10):2839–2848. doi:10.1016/j.eurpolymj.2009.07.006

    Article  CAS  Google Scholar 

  82. Graham T (1864) On the molecular mobility of gases. J Chem Soc London 17:334–339

    Google Scholar 

  83. Duda JL, Zielinski JM (1996) Free volume theory. In: Neogi P (ed) Diffusion in polymers, vol 32. Marcel Dekker, New York, pp. 143–171

    Google Scholar 

  84. Theodorou DN (1996) Molecular simulations of sorption and diffusion in amorphous polymers. In: Neogi P (ed) Diffusion in polymers, vol 32. Marcel Dekker, New York, pp. 67–142

    Google Scholar 

  85. Xi L, Shah M, Trout BL (2013) Hopping of water in a glassy polymer studied via transition path sampling and likelihood maximization. J Phys Chem B 117(13):3634–3647

    Article  CAS  Google Scholar 

  86. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643. doi:10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  87. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  88. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652. doi:10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  89. Arrnentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38(10–11):1720–1747. doi:10.1016/j.progpolymsci.2013.05.010

    Article  CAS  Google Scholar 

  90. Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16(4):149–158. doi:10.1002/pts.621

    Article  CAS  Google Scholar 

  91. Pauly S (1999) Permeability and diffusion data. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, vol 2. Wiley, New York, pp. 543–569

    Google Scholar 

  92. Domenek S, Courgneau C, Ducruet V (2011) Characteristics and applications of PLA. In: Kalia S, Averous L (eds) Biopolymers: biomedical and environmental applications. Wiley, Hoboken/Scrivener, Salem, pp. 183–223

    Chapter  Google Scholar 

  93. Mensitieri G, Di Maio E, Buonocore G, Nedi I, Oliviero M, Sansone L, Iannace S (2010) Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci Technol 22:72–80. doi:10.1016/j.tifs.2010.10.001

    Article  CAS  Google Scholar 

  94. Martino VP, Jiménez A, Ruseckaite RA (2009) Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. J Appl Polym Sci 112:2010–2018

    Article  CAS  Google Scholar 

  95. Ambrosio-Martin J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2014) An effect of lactic acid oligomers on the barrier properties of polylactide. J Mater Sci 49(8):2975–2986. doi:10.1007/s10853-013-7929-x

    Article  CAS  Google Scholar 

  96. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) Novel pet nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J Plast Film Sheet 23(2):133–148. doi:10.1177/8756087907083590

    Article  CAS  Google Scholar 

  97. Belard L, Poncin-Epaillard F, Dole P, Averous L (2013) Plasma-polymer coatings onto different biodegradable polyesters surfaces. Eur Polym J 49(4):882–892. doi:10.1016/j.eurpolymj.2012.11.022

    Article  CAS  Google Scholar 

  98. Lagaron JM, Sanchez G (2008) Thermoplastic nanobiocomposites for rigid and flexible food packaging applications. In: Chiellini E (ed) Environmentally compatible food packaging. Woodhead Publishing, Cambridge, pp. 62–89

    Google Scholar 

  99. Dong T, Yu ZF, Wu JX, Zhao ZL, Yun XY, Wang Y, Jin Y, Yang JJ (2015) Thermal and barrier properties of stretched and annealed polylactide films. Polym Sci Ser A 57(6):738–746. doi:10.1134/s0965545x15060073

    Article  CAS  Google Scholar 

  100. Colomines G, Ducruet V, Courgneau C, Guinault A, Domenek S (2010) Barrier properties of poly(lactic acid) and its morphological changes induced by aroma compound sorption. Polym Int 59(6):818–826. doi:10.1002/pi.2793

    CAS  Google Scholar 

  101. Drieskens M, Peeters R, Mullens J, Franco D, Lemstra PJ, Hristova-Bogaerds DG (2009) Structure versus properties relationship of poly(lactic acid). I. Effect of crystallinity on barrier properties. J Polym Sci B Polym Phys 47(22):2247–2258

    Article  CAS  Google Scholar 

  102. Guinault A, Sollogoub C, Ducruet V, Domenek S (2012) Impact of crystallinity of poly(lactide) on helium and oxygen barrier properties. Eur Polym J 48(4):779–788

    Article  CAS  Google Scholar 

  103. Sawada H, Takahashi Y, Miyata S, Kanehashi S, Sato S, Nagai K (2010) Gas transport properties and crystalline structure of poly(lactic acid) membranes. Trans Mater Res Soc Jpn 35:241–246

    Article  CAS  Google Scholar 

  104. Kanehashi S, Kusakabe A, Sato S, Nagai K (2010) Analysis of permeability; solubility and diffusivity of carbon dioxide; oxygen; and nitrogen in crystalline and liquid crystalline polymers. J Membr Sci 365(1–2):40–51. doi:10.1016/j.memsci.2010.08.035

    Article  CAS  Google Scholar 

  105. Bai HW, Huang CM, Xiu H, Zhang Q, Deng H, Wang K, Chen F, Fu Q (2014) Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned Shish-Kebab-like crystals with well-interlocked boundaries. Biomacromolecules 15(4):1507–1514. doi:10.1021/bm500167u

    Article  CAS  Google Scholar 

  106. Wen X, Zhang KY, Wang Y, Han LJ, Han CY, Zhang HL, Chen S, Dong LS (2011) Study of the thermal stabilization mechanism of biodegradable poly(L-lactide)/silica nanocomposites. Polym Int 60(2):202–210. doi:10.1002/pi.2927

    Article  CAS  Google Scholar 

  107. Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53(1):58–65. doi:10.1016/j.clay.2011.04.023

    Article  CAS  Google Scholar 

  108. Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    Article  CAS  Google Scholar 

  109. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci 107(1-2):1–21

    Article  CAS  Google Scholar 

  110. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: A review. Eur Polym J 45(4):967–984. doi:10.1016/j.eurpolymj.2009.01.027

    Article  CAS  Google Scholar 

  111. Paul MA, Alexandre M, Degee P, Henr`ist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44(2):443–450. doi:10.1016/s0032-3861(02)00778-4

    Article  CAS  Google Scholar 

  112. Chang J-H, An YU, Sur GS (2003) Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci B Polym Phys 41(1):94–103

    Article  CAS  Google Scholar 

  113. Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. III. High-performance biodegradable materials. Chem Mater 15(7):1456–1465

    Article  CAS  Google Scholar 

  114. Zenkiewicz M, Richert J (2008) Permeability of polylactide nanocomposite films for water vapour, oxygen and carbon dioxide. Polym Test 27:835–840

    Article  CAS  Google Scholar 

  115. Guo YC, Yang K, Zuo XH, Xue Y, Marmorat C, Liu Y, Chang CC, Rafailovich MH (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of poly (lactic acid) nanocomposites. Polymer 83:246–259. doi:10.1016/j.polymer.2015.12.012

    Article  CAS  Google Scholar 

  116. Ortenzi MA, Basilissi L, Farina H, Di Silvestro G, Piergiovanni L, Mascheroni E (2015) Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of L-lactide with silane-modified nanosilica and montmorillonite. Eur Polym J 66:478–491. doi:10.1016/j.eurpolymj.2015.03.006

    Article  CAS  Google Scholar 

  117. Ambrosio-Martin J, Lopez-Rubio A, Fabra MJ, Lopez-Manchado MA, Sorrentino A, Gorrasi G, Lagaron JM (2016) Synergistic effect of lactic acid oligomers and laminar graphene sheets on the barrier properties of polylactide nanocomposites obtained by the in situ polymerization pre-incorporation method. J Appl Polym Sci 133(2). doi:10.1002/app.42661

  118. Pinto AM, Cabral J, Pacheco Tanaka DA, Mendes AM, Magalhaes FD (2013) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 62(1):33–40. doi:10.1002/pi.4290

    Article  CAS  Google Scholar 

  119. Tripathi N, Katiyar V (2016) PLA/functionalized-gum arabic based bionanocomposite films for high gas barrier applications. J Appl Polym Sci 133(21):43458. doi:10.1002/app.43458

    Article  CAS  Google Scholar 

  120. Azizi S, My AS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  121. Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49(10):3144–3154. doi:10.1016/j.eurpolymj.2013.07.017

    Article  CAS  Google Scholar 

  122. Espino-Perez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15(12):5441–4560. doi:10.1021/bm5013458

    Article  CAS  Google Scholar 

  123. Espino-Perez E, Gilbert RG, Domenek S, Brochier-Salon MC, Belgacem MN, Bras J (2016) Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydr Polym 135:256–266. doi:10.1016/j.carbpol.2015.09.005

    Article  CAS  Google Scholar 

  124. Sanchez-Garcia M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17(5):987–1004

    Article  CAS  Google Scholar 

  125. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71(2):235–244. doi:10.1016/j.carbpol.2007.05.041

    Article  CAS  Google Scholar 

  126. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.1021/bm801065u

    Article  CAS  Google Scholar 

  127. Martucci JF, Ruseckaite RA (2010) Three-layer sheets based on gelatin and poly(lactic acid), part 1: preparation and properties. J Appl Polym Sci 118(5):3102–3110. doi:10.1002/app.32751

    Article  CAS  Google Scholar 

  128. Svagan AJ, Akesson A, Cardenas M, Bulut S, Knudsen JC, Risbo J, Plackett D (2012) Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromolecules 13(2):397–405. doi:10.1021/bm201438m

    Article  CAS  Google Scholar 

  129. Liu RYF, Ranade AP, Wang HP, Bernal-Lara TE, Hiltner A, Baer E (2005) Forced assembly of polymer nanolayers thinner than the interphase. Macromolecules 38(26):10721–10727. doi:10.1021/ma051649x

    Article  CAS  Google Scholar 

  130. Oliveira NS, Dorgan J, Coutinho JAP, Ferreira A, Daridon JL, Marrucho IM (2007) Gas solubility of carbon dioxide in poly(lactic acid) at high pressures: thermal treatment effect. J Polym Sci B Polym Phys 45(5):616–625

    Article  CAS  Google Scholar 

  131. Bao L, Dorgan JR, Knauss D, Hait S, Oliveira NS, Maruccho IM (2006) Gas permeation properties of poly(lactic acid) revisited. J Membr Sci 285(1–2):166–172. doi:10.1016/j.memsci.2006.08.021

    Article  CAS  Google Scholar 

  132. Dorgan JR, Lehermeier HJ, Palade L-I, Cicero J (2001) Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromol Symp 175:55–66

    Article  CAS  Google Scholar 

  133. Lehermeier HJ, Dorgan JR, Way JD (2001) Gas permeation properties of poly(lactic acid). J Membr Sci 190:243–251

    Article  CAS  Google Scholar 

  134. Komatsuka T, Kusakabe A, Nagai K (2008) Characterization and gas transport properties of poly(lactic acid) blend membranes. Desalination 234(1–3):212–220

    Article  CAS  Google Scholar 

  135. Sato S, Nyuui T, Matsuba G, Nagai K (2014) Correlation between interlamellar amorphous structure and gas permeability in poly(lactic acid) films. J Appl Polym Sci 131(16):40626. doi:10.1002/app.40626

    Article  CAS  Google Scholar 

  136. Shogren R (1997) Water vapor permeability of biodegradable polymers. J Polym Environ 5(2):91–95

    Article  CAS  Google Scholar 

  137. Siparsky G, Voorhees K, Dorgan J, Schilling K (1997) Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA/polyethylene glycol blends. J Polym Environ 5(3):125–136

    CAS  Google Scholar 

  138. Holm VK, Ndoni S, Risbo J (2006) The stability of poly(lactic acid) packaging films as influenced by humidity and temperature. J Food Sci 71:E40–E44

    Article  CAS  Google Scholar 

  139. Tsuji H, Okino R, Daimon H, Fujie K (2006) Water vapor permeability of poly(lactide)s: effects of molecular characteristics and cristallinity. J Appl Polym Sci 99:2245–2252

    Article  CAS  Google Scholar 

  140. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  141. Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44(10):2891–2896. doi:10.1016/s0032-3861(03)00175-7

    Article  CAS  Google Scholar 

  142. Davis EM, Minelli M, Baschetti MG, Elabd YA (2013) Non-Fickian diffusion of water in polylactide. Ind Eng Chem Res 52(26):8664–8673. doi:10.1021/ie302342m

    Article  CAS  Google Scholar 

  143. Rhim J-W, Hong S-I, Ha C-S (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42(2):612–617

    Article  CAS  Google Scholar 

  144. Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E (2014) Structural dependence of the molecular mobility in the amorphous fractions of polylactide. Macromolecules 47(15):5186–5197. doi:10.1021/ma500839p

    Article  CAS  Google Scholar 

  145. Tsuji H, Tsuruno T (2010) Water vapor permeability of poly(L-lactide)/poly(D-lactide) stereocomplexes. Macromol Mater Eng 295(8):709–715. doi:10.1002/mame.201000071

    Article  CAS  Google Scholar 

  146. Liu D, Li HL, Zhou GX, Yuan ML, Qin YY (2015) Biodegradable poly(lactic-acid)/poly(trimethylene-carbonate)/laponite composite film: development and application to the packaging of mushrooms (Agaricus bisporus). Polym Adv Technol 26(12):1600–1607. doi:10.1002/pat.3587

    Article  CAS  Google Scholar 

  147. Halasz K, Hosakun Y, Csoka L (2015) Reducing water vapor permeability of poly(lactic acid) film and bottle through layer-by-layer deposition of green-processed cellulose nanocrystals and chitosan. Int J Polym Sci 2015:1–6. doi:10.1155/2015/954290

    Article  CAS  Google Scholar 

  148. Auras R, Harte B, Selke S (2006) Sorption of ethyl acetate and d-limonene in poly(lactide) polymers. J Sci Food Agric 86(4):648–656

    Article  CAS  Google Scholar 

  149. Haugaard V, Weber C, Danielsen B, Bertelsen G (2002) Quality changes in orange juice packed in materials based on polylactate. Eur Food Res Technol 214(5):423–428

    Article  CAS  Google Scholar 

  150. Mauricio-Iglesias M, Peyron S, Chalier P, Gontard N (2011) Scalping of four aroma compounds by one common (LDPE) and one biosourced (PLA) packaging materials during high pressure treatments. J Food Eng 10:9–15

    Article  CAS  Google Scholar 

  151. Salazar R, Domenek S, Courgneau C, Ducruet V (2012) Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polym Degrad Stab 97(10):1871–1880

    Article  CAS  Google Scholar 

  152. Salazar R, Domenek S, Ducruet V (2014) Interactions of flavoured oil in-water emulsions with polylactide. Food Chem 148:138–146

    Article  CAS  Google Scholar 

  153. Jin Z, Tian Y, Wang Y (2010) Chemistry and thermodynamics properties of lactic acid and lactide and solvent miscibility. In: Auras R, Lim LT, Selke S, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, pp. 19–25

    Chapter  Google Scholar 

  154. Widiastuti I, Sbarski I, Masood SH (2014) Mechanical response of poly(lactic acid)-based packaging under liquid exposure. J Appl Polym Sci 131(16):40600. doi:10.1002/app.40600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Domenek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Domenek, S., Fernandes-Nassar, S., Ducruet, V. (2017). Rheology, Mechanical Properties, and Barrier Properties of Poly(lactic acid). In: Di Lorenzo, M., Androsch, R. (eds) Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, vol 279. Springer, Cham. https://doi.org/10.1007/12_2016_17

Download citation

Publish with us

Policies and ethics