Skip to main content
Log in

Chain entanglement, mechanical properties and drawability of poly(lactide)

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The observed brittle fracture behavior of amorphous polylactides seems to be contradicted by the low value ofC =2 determined for poly(L-lactide) by Flory and coworkers. Such very flexible polymer chains deform by shear yielding, and fracture in a ductile manner. In this study,C was estimated in a number of ways, resulting in much higher values ofC =11.7 andC =9.1 for poly(L-lactide) and L- and D-lactide copolymers, respectively. These high values ofC and the low entanglement density account for the brittle fracture behavior of amorphous poly(lactide), as well as for the maximum attainable draw ratios of poly(L-lactide) networks and melt spun fibers. Bulk polymerized poly(L-lactide) networks, where crystallization during polymerization impedes severe entangling, could be hot-drawn most effectively to draw ratios of 8–16, resulting in very strong materials with tensile strengths of 550–805 MPa. By comparison, amorphous, non-crystallizable L/D lactide networks, which do not crystallize during polymerization, could be drawn less, to λ=7. These materials with strengths up to 460 MPa could, nevertheless, be oriented much more effectively than linear, amorphous L/D lactide copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilding DK, Reed AM (1979) Polymer 20:1459

    Google Scholar 

  2. Li SM, Garreau H, Vert M (1990) J Mater Sci Mater Med 1:123

    Google Scholar 

  3. Nakamura T, Hitomi S, Watanabe S, Shimizu Y, Jamshidi K, Hyon SH, Ikada Y (1989) J. Biomed Mater Res 23:1115

    Google Scholar 

  4. Leenslag JW, Pennings AJ (1987) Makromol Chem 188:1809

    Google Scholar 

  5. Vert M, Chabot F, Leray J, Christel P (1981) Makromol Chem Suppl 5:30

    Google Scholar 

  6. Leenslag JW Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Biomaterials, 8:70

    Google Scholar 

  7. Bos RRM, Boering G, Rozema FR, Leenslag JW, Pennings AJ, Verwey AB (1987) J Oral Maxillofac Surg 45:751

    Google Scholar 

  8. Schindler A, Jeffcoat R, Kimmel GL, Pitt CG, Wall ME, Zweidinger R (1977) In: “Contemporary topics in polymer science”, vol 2 251, Eds, Pearce JR, Schaefgen EM, Plenum Press, New York, USA

    Google Scholar 

  9. Esselbrugge H (1992) PhD Thesis, University of Twente. The Netherlands

  10. Schakenraad JM, Oosterbaan JA, Nieuwenhuis P, Molenaar I, Olijslager J, Potman W, Eenink MJD, Feijen J (1988) Biomaterials 9:116

    Google Scholar 

  11. Spenlehauer G, Vert M, Benoit JP, Boddaert A (1989) Biomaterials 10:557

    Google Scholar 

  12. Postema AR, Pennings AJ (1989) J Appl Polym Sci 37:2351

    Google Scholar 

  13. Bos RRM, Rozema FR, Boering G, Nijenhuis AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HWB (1991) Biomaterials 12:28

    Google Scholar 

  14. Rozema FR, de Bruijn WC, Bos RRM, Boering G, Nijenhuis AJ, Pennings AJ (1992) J Biomed Mater Res, submitted Rozema FR,, PhD Thesis, University of Groningen, The Netherlands, (1991)

    Google Scholar 

  15. Pitt CG, Gratz MM, Kimmel GL, Surles J, Schindler J (1989) Biomaterials 2:215

    Google Scholar 

  16. Grijpma DW, Nijenhuis AJ, Pennings AJ, (1990) Polymer 31:2201

    Google Scholar 

  17. Grijpma DW, Pennings AJ (1993) Makromol Chem Phys 195:1649

    Google Scholar 

  18. Grijpma DW, van Hofslot RDA, Supèr H, Nijenhuis AJ, Pennings AJ (1994) Pol Eng Sci in press

  19. Grijpma DW, Joziasse CAP, Pennings AJ (1993) Makromol Chem Rapid Commun 14:155

    Google Scholar 

  20. Wu S (1990) Pol Eng Sci 30:753

    Google Scholar 

  21. Wu S (1992) Polymer International 29:229

    Google Scholar 

  22. Tonelli AE, Flory PJ (1969) Macromolecules 2:225

    Google Scholar 

  23. Brant DA, Tonelli AE, Flory PJ (1969) Macromolecules 2:228

    Google Scholar 

  24. Schindler A, Harper D (1979) J Polym Sci Polym Chem Ed 17:2593

    Google Scholar 

  25. van Krevelen DW (1976) “Properties of polymers, their estimation and correlation with chemical structure”, 2nd Edition, Elsevier Publishing, Amsterdam, The Netherlands

    Google Scholar 

  26. Wu S (1992) Pol Eng Sci 32:823

    Google Scholar 

  27. Nijenhuis AJ, Grijpma DW, Pennings AJ (1991) Polym Bull 26:71

    Google Scholar 

  28. Nijenhuis AJ, Grijpma DW, Pennings AJ (1992) Macromolecules 25:6419

    Google Scholar 

  29. Leenslag JW, Pennings AJ (1987) Polymer Commun, 28:92

    Google Scholar 

  30. Grijpma DW, Kroeze E, Nijenhuis AJ, Pennings AJ (1993) Polymer 34:1496

    Google Scholar 

  31. Schindler A, Hibionada YM, Pitt CG (1982) J Polym Sci Polym Chem Ed 20:279

    Google Scholar 

  32. Krimm H, Buysch HJ (1988) European Patent to Bayer AG, EP 0057360

  33. Wu S (1989) J Polym Sci Polym Phys Ed 27:723

    Google Scholar 

  34. Aharoni SM (1985) Macromolecules 18:2624

    Google Scholar 

  35. Turner DT (1982) Polymer 23:626

    Google Scholar 

  36. Gent AN, Thomas AG (1972) J Polym Sci A2 10:571

    Google Scholar 

  37. Kausch HH (1987) “Polymer fracture”, 2nd Edition, Springer-Verlag, Berlin, Germany

    Google Scholar 

  38. Kinloch AJ, Young RJ (1983) “Fracture behaviour of polymers”, Applied Science Publishers Ltd, London GB

    Google Scholar 

  39. Zurimendi JA, Biddlestone F, Hay JN, Haward RN (1982) J Mater Sci 17:199

    Google Scholar 

  40. Schulz JM (1984) Pol Eng Sci 24:770

    Google Scholar 

  41. Flory PJ, Yoon DY (1978) Nature 272:226

    Google Scholar 

  42. Mandelkern L (1984) in “Physical properties of polymers”, Eds, Mark JE, Eisenberg, A, Graessley WW, Mandelkern L, Koenig JL, American Chemical Society, Washington DC, USA

    Google Scholar 

  43. Pennings AJ (1979) Makromol Chem Suppl 12:99

    Google Scholar 

  44. Offergeld H, Michaeli W, Menges G (1989) Annual Technical Conference Proceedings of the Society of Plastics Engineers, ANTEC 89:1282

    Google Scholar 

  45. Donald AM, Kramer EJ (1982) J Polym Sci Polym Phys Ed 20:899

    Google Scholar 

  46. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G, Zugenmaier P (1990) Macromolecules 23:634

    Google Scholar 

  47. Mullins L (1959) J Appl Polym Sci 2:1

    Google Scholar 

  48. Flory PJ (1979) Macromolecules 12:119

    Google Scholar 

  49. Prevorsek DC, DeBona BT (1981) J Macromol Sci PhysB(19)4:605

    Google Scholar 

  50. Aharoni SM (1983) Macromolecules 16:1722

    Google Scholar 

  51. Rault J (1985) Comptes Rendus Acad Sci Paris 300:433

    Google Scholar 

  52. Wool RP (1993) Macromolecules 26:1564

    Google Scholar 

  53. Fox TG, Allen VR (1964) J Chem Phys 41:344

    Google Scholar 

  54. Kavasallis TA, Noorlandi J (1989) Macromolecules 22:2709

    Google Scholar 

  55. Porter RS, Johnson JF (1966) Chemical Reviews 66:1

    Google Scholar 

  56. Flory PJ (1969) “Statistical mechanics of chain molecules”, Interscience Publishers, New York, USA

    Google Scholar 

  57. Fischer EW, Sterzel HJ, Wegner G (1973) Kolloid-Z u Z Polymere 251:980

    Google Scholar 

  58. (1979) “Ultra-high modulus polymers”, Ciferri A, Ward IM (Eds., Applied Sciences Publishers, London GB

    Google Scholar 

  59. Smith P, Lemstra PJ, Booij HC (1981) J Polym Sci Polym Phys Ed, 19:877

    Google Scholar 

  60. Smook J, Flinterman M, Pennings AJ (1980) Polym Bull 2:775

    Google Scholar 

  61. Leenslag JW, Pennings AJ (1987) Polymer 28:1695

    Google Scholar 

  62. Tunc DC (1988) European Patent Application by Johnson and Johnson, EP 0281176 A2

  63. Penning JP, Dijkstra H, Pennings AJ (1993) Polymer 34:942

    Google Scholar 

  64. Eling B, Gogolewski S, Pennings AJ (1982) Polymer 23:1587

    Google Scholar 

  65. Hyon SH, Jamshidi K, Ikada Y (1983) Polym Prep 24:6

    Google Scholar 

  66. Kalb B, Pennings AJ (1980) J Mater Sci 15:2584

    Google Scholar 

  67. Penning JP, Grijpma DW, Pennings AJ (1993) J Mater Sci Let 12:1048

    Google Scholar 

  68. Tunc DC (1991) Clinical Materials 8:119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grijpma, D.W., Penning, J.P. & Pennings, A.J. Chain entanglement, mechanical properties and drawability of poly(lactide). Colloid Polym Sci 272, 1068–1081 (1994). https://doi.org/10.1007/BF00652375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652375

Key words

Navigation