Skip to main content

Halogen Bonding in the Gas Phase: A Comparison of the Iodine Bond in B⋯ICl and B⋯ICF3 for Simple Lewis Bases B

  • Chapter
  • First Online:
Halogen Bonding I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 358))

Abstract

Methods for observing the rotational spectra of the halogen-bonded complexes B⋯ICl and B⋯ICF3 (B = N2, CO, HC≡CH, H2C=CH2, H2O, H2S, PH3 or NH3) and deriving from them properties such as angular geometry, radial geometry, the strength of the intermolecular bond, and the extent of electron redistribution on complex formation are described. Comparison of various properties reveals several similarities between the two series. Thus, the B⋯ICF3 obey a set of rules which were originally proposed to rationalise the angular geometries of hydrogen-bonded complexes of the type B⋯HX, but which were subsequently found to apply to their halogen-bonded analogues B⋯XY, where XY is a dihalogen molecule, including ICl. Important for establishing the validity of these rules in both series B⋯ICl and B⋯ICF3 were the complexes with B = H2O or H2S. The configuration at O in H2O⋯ICF3 and H2O⋯ICl is effectively planar. On the other hand, the configuration at S in H2S⋯ICF3 and H2S⋯ICl is permanently pyramidal. Ab initio calculations of potential energy functions for inversion at O or S performed at the CCSD(T)(F12*)/cc-pVDZ-F12 level of theory confirmed these conclusions. Comparison of the intermolecular stretching force constants k σ show that the series B⋯ICF3 is systematically more weakly bound than B⋯ICl. Interpretation of k σ in terms of nucleophilicities N B of B and electrophilicities E IR of ICl and ICF3 reveals that \( {E}_{{\mathrm{ICF}}_3}\approx {E}_{\mathrm{ICl}}/3 \). Experimental and ab initio values of distances r(Z⋯I), where Z is the acceptor atom/region of B, show that, for a given B, the intermolecular bond of B⋯ICF3 is longer than that of B⋯ICl. The electronic charge redistributed from B to ICF3 on formation of B⋯ICF3 is probably negligibly small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The program Anharm was originally developed by Johan Mjöberg (see [60]). The version used here is the one modified by Kisiel Z. http://www.ifpan.edu.pl/~kisiel/prospe.htm

References

  1. Davey JB, Legon AC, Waclawik ER (2000) Measurement of inter- and intramolecular charge transfer in the complex N2⋯ICl from analysis of halogen nuclear quadrupole hyperfine structure in the rotational spectrum. J Mol Struct 500:391–402

    Article  Google Scholar 

  2. Davey JB, LegonAC, Waclawik ER (1999) Inter- and intra-molecular electron transfer in the complex OC⋯ICl determined from iodine and chlorine nuclear quadrupole hyperfine structure in its rotational spectrum. Phys Chem Chem Phys 1:3097–3102

    Google Scholar 

  3. Davey JB, Legon AC (1999) Rotational spectroscopy of mixtures of ethyne and iodine monochloride: isolation and characterisation of the π-type complex C2H2⋯ICl. Phys Chem Chem Phys 1:3721–3726

    Article  CAS  Google Scholar 

  4. Thumwood JMA, Legon AC (1999) A π-electron donor-acceptor complex of ethene and iodine monochloride: geometry, binding strength and charge redistribution determined by rotational spectroscopy. Chem Phys Letts 310:88–96

    Article  CAS  Google Scholar 

  5. Davey JB, Legon AC, Waclawik ER (2000) An investigation of the gas-phase complex of water and iodine monochloride by microwave spectroscopy: geometry, binding strength and electron redistribution. Phys Chem Chem Phys 2:1659–1665

    Article  CAS  Google Scholar 

  6. Legon AC, Waclawik ER (1999) Angular geometry, binding strength and charge transfer for the complex H2S⋯ICl determined by rotational spectroscopy. Chem Phys Letts 312:385–393

    Article  CAS  Google Scholar 

  7. Herrebout WA, Legon AC, Waclawik ER (1999) Is there a significant intermolecular charge transfer in the ground state of the HCN⋯ICl complex? An answer from rotational spectroscopy. Phys Chem Chem Phys 1:4961–4966

    Article  CAS  Google Scholar 

  8. Waclawik ER, Legon AC (1999) Halogen nuclear quadrupole coupling in the rotational spectrum of H3N⋯ICl as a probe of inter- and intramolecular transfer. Phys Chem Chem Phys 1:4695–4700

    Article  CAS  Google Scholar 

  9. Davey JB, Legon AC, Waclawik ER (2000) Inter- and intramolecular electronic transfer on formation of H3P⋯ICl as determined by rotational spectroscopy. Phys Chem Chem Phys 2:2265–2269

    Article  CAS  Google Scholar 

  10. Anable JP, Hird DE, Stephens SL, Zaleski DP, Walker NR, Legon AC (2014) The rotational spectrum of N2⋯ICF3 observed with a broadband, chirped-pulse FT microwave spectrometer. Manuscript in preparation

    Google Scholar 

  11. Stephens SL, Walker NR, Legon AC (2011) Rotational spectra and properties of complexes B⋯ICF3 (B=Kr or CO) and a comparison of the efficacy of ICl and ICF3 as iodine donors in halogen bond formation. J Chem Phys 135:224309

    Article  Google Scholar 

  12. Stephens SL, Walker NR, Legon AC (2014) Broadband rotational spectroscopy of the ethyne⋯ICF3 complex in the microwave region. Manuscript in preparation

    Google Scholar 

  13. Stephens SL, Mizukami W, Tew DP, Walker NR, Legon AC (2012) The halogen bond between ethene and a simple perfluoroiodoalkane: C2H4⋯ICF3 identified by broadband rotational spectroscopy. J Mol Spectrosc 280:47–53

    Google Scholar 

  14. Stephens SL, Walker NR, Legon AC (2011) Molecular geometries of H2S⋯ICF3 and H2O⋯ICF3 characterised by broadband rotational spectroscopy. Phys Chem Chem Phys 13:21093–21101

    Google Scholar 

  15. Stephens SL, Walker NR, Legon AC (2011) Internal rotation and halogen bonds in CF3I⋯NH3 and CF3I⋯N(CH3)3 probed by broadband rotational spectroscopy. Phys Chem Chem Phys 13:20736–20744

    Google Scholar 

  16. Stephens SL, Walker NR, Legon AC (2014) The broadband rotational spectrum of H3P⋯ICF3 and internal rotation. Manuscript in preparation

    Google Scholar 

  17. Legon AC (1998) π-Electron ‘donor-acceptor’ complexes B⋯ClF and the existence of the ‘chlorine’ bond. Chem Eur J 4:1890–1897

    Google Scholar 

  18. Legon AC (1999) Pre-reactive complexes of dihalogens XY with Lewis bases B in the gas phase: a systematic case for the ‘halogen’ analogue B⋯XY of the hydrogen bond B⋯HX. Angew Chem Int Ed Engl 38:2686–2714

    Google Scholar 

  19. Legon AC (2008) The interaction of dihalogens and hydrogen halides with Lewis bases in the gas phase: an experimental comparison of the halogen bond and the hydrogen bond. In: Metrangolo P, Resnati G (eds) Halogen bonding: fundamentals and applications. Structure and bonding, vol 126. Springer, Berlin, pp 17–64

    Google Scholar 

  20. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  21. Evangelisti L, Feng G, Ecija P, Cocinero EJ, Fernando Castaño F, Caminati WA (2011) The halogen bond and internal dynamics in the molecular complex of CF3Cl and H2O. Angew Chem Int Ed Engl 50:7807–7810

    Article  CAS  Google Scholar 

  22. Feng G, Evangelisti L, Gasparini N, Caminati W (2012) On the Cl⋯N halogen bond: a rotational study of CF3Cl⋯NH3. Chem Eur J 18:1364–1368

    Google Scholar 

  23. Evangelisti L, Feng G, Gou Q, Guidetti G, Caminati W (2012) Orientation of the water moiety in CF4-H2O. J Mol Spectrosc 282:39–41

    Article  CAS  Google Scholar 

  24. Springer SD, Rivera-Rivera LA, Scott KW, McElmurry BA, Wang Z, Leonov II, Lucchese RR, Legon AC, Bevan JW (2012) A CMM-RS potential for characterization of the properties of the halogen-bonded OC-Cl2 complex. J Phys Chem A 116:1213–1223

    Article  CAS  Google Scholar 

  25. Legon AC (1995) Mulliken n.aσ* and bπ.aσ* complexes B⋯Cl2 in the gas phase: rules for predicting angular geometries and nature of the interaction. Chem Phys Lett 237:291–298

    Article  CAS  Google Scholar 

  26. Legon AC (1995) Donor-acceptor complexes of Lewis bases with bromine monochloride in the gas phase: some generalisations from rotational spectroscopy. J Chem Soc Faraday Trans 91:1881–1883

    Article  CAS  Google Scholar 

  27. Legon AC (1997) Nature of complexes B⋯ClF in the gas phase: conclusions from systematic variation of the Lewis base B and a comparison of the B⋯ClF/B⋯HCl series. Chem Phys Lett 279:55–64

    Article  CAS  Google Scholar 

  28. Legon AC (1998) Quantitative gas-phase electrophilicities of the dihalogen molecules XY=F2, Cl2, Br2, BrCl and ClF. J Chem Soc Chem Commun 25852586

    Google Scholar 

  29. Legon AC (1999) Angular and radial geometries, charge transfer and binding strength in isolated complexes B⋯ICl: some generalisations. Chem Phys Lett 314:472–480

    Article  CAS  Google Scholar 

  30. Legon AC (1998) The nature of the interaction of molecular fluorine and Lewis bases B from a comparison of the properties of B⋯F2 and B⋯HF. J Chem Soc Chem Commun 2737–2738

    Google Scholar 

  31. Stone AJ (2013) Are halogen bonds electrostatically driven? J Am Chem Soc 135:7005–7009

    Article  CAS  Google Scholar 

  32. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed Engl 47:6114–6127

    Article  CAS  Google Scholar 

  33. Balle TJ, Flygare WH (1981) Fabry-Perot cavity Fourier transform microwave spectroscopy with a pulsed nozzle particle source. Rev Sci Instrum 52:33–45

    Article  CAS  Google Scholar 

  34. Legon AC (1992) Fourier transform microwave spectroscopy. In: Scoles G (ed) Atomic and molecular beam methods, vol 2. Oxford University Press, New York, pp 289–308

    Google Scholar 

  35. Brown GG, Dian BC, Douglass KO, Geyer SM, Shipman SS, Pate BH (2008) A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev Sci Instrum 79:053103-1-13

    Google Scholar 

  36. Stephens SL, Walker NR (2010) Determination of nuclear spin-rotation coupling constants in CF3I by chirped-pulse Fourier-transform microwave spectroscopy. J Mol Spectrosc 263:27–33

    Article  CAS  Google Scholar 

  37. Kraitchman J (1953) Determination of molecular structures from microwave spectroscopic data. Am J Phys 21:17–24

    Article  CAS  Google Scholar 

  38. Costain CC (1958) Determination of molecular structure from ground-state spectroscopic constants. J Chem Phys 29:864–874

    Article  CAS  Google Scholar 

  39. Gordy W, Cook RL (1984) Microwave molecular spectra. In: Weissberger A (ed) Techniques of chemistry, vol 56. Wiley, New York, pp 726–795

    Google Scholar 

  40. Herzberg G (1950) Molecular spectra and molecular structure. I. Spectra of diatomic molecules, 2nd edn. Van Nostrand, New York, p 103

    Google Scholar 

  41. Millen DJ (1985) Determination of stretching force constants of weakly bound dimers from centrifugal distortion constants. Can J Chem 63:1477–1479

    Article  CAS  Google Scholar 

  42. Townes CH, Schawlow AL (1955) Microwave spectroscopy. McGraw-Hill, New York, Chap 9, p 225

    Google Scholar 

  43. Legon AC, Millen DJ (1982) Determination of properties of hydrogen-bonded dimers by rotational spectroscopy and a classification of dimer geometries. Faraday Discuss Chem Soc 73:71–87

    Article  CAS  Google Scholar 

  44. Legon AC, Millen DJ (1987) Directional character, strength and nature of the hydrogen bond in gas-phase dimers. Acc Chem Res 20:39–46

    Article  CAS  Google Scholar 

  45. Legon AC, Millen DJ (1987) Angular geometries and other properties of hydrogen-bonded dimers: a simple electrostatic interpretation based on the success of the electron-pair model. Chem Soc Rev 16:467–498

    Article  CAS  Google Scholar 

  46. Stone AJ (1981) Distributed multipole analysis or how to describe molecular charge distributions. Chem Phys Lett 83:233–239

    Article  CAS  Google Scholar 

  47. Buckingham AD, Fowler PW (1985) A model for the geometries of van der Waals complexes. Can J Chem 63:2018–2025

    Article  CAS  Google Scholar 

  48. Buckingham AD (1967) Permanent and induced molecular moments and long-range intermolecular forces. Adv Chem Phys 12:107–142

    CAS  Google Scholar 

  49. Kisiel Z, Legon AC, Millen DJ (1982) Spectroscopic investigations of hydrogen bonding interactions in the gas phase. VII. The equilibrium conformation and out-of-plane bending potential energy function of the hydrogen-bonded heterodimer H2O⋯HF determined from its microwave rotational spectrum. Proc R Soc Lond A 381:419–442

    Article  CAS  Google Scholar 

  50. Viswanathan R, Dyke TR (1982) The structure of H2S · HF and the stereochemistry of the hydrogen bond. J Chem Phys 77:1166–1174

    Article  CAS  Google Scholar 

  51. Willoughby LC, Fillery-Travis AJ, Legon AC (1984) An investigation of the rotational spectrum of H2S⋯HF by pulsed-nozzle, Fourier-transform microwave spectroscopy: determination of the hyperfine coupling constants χ aa (33 S), χ D aa  and D H(D)F aa . J Chem Phys 81:20–26

    Google Scholar 

  52. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M et al (2012) MOLPRO, version 2012.1, a package of ab initio programs. http://www.molpro.net

  53. Hättig C, Tew DP, Köhn A (2010) Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. J Chem Phys 132:231102

    Article  Google Scholar 

  54. Peterson KA, Adler TB, Werner H-J (2008) Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne and Al-Ar. J Chem Phys 128:084102

    Article  Google Scholar 

  55. Hill JG, Peterson KA (2014) Correlation consistent basis sets for explicitly correlated wavefunctions: Pseudopotential-based basis sets for the post-d main group elements Ga-Rn. J Chem Phys 141:094106

    Article  Google Scholar 

  56. Kisiel Z, Pietrewicz BA, Fowler PW, Legon AC, Steiner E (2000) Rotational spectra of the less common isotopomers, electric dipole moment and double-minimum inversion potential of H2O⋯HCl. J Phys Chem 104:6970–6978

    Article  CAS  Google Scholar 

  57. Davey JB, Legon AC, Thumwod JMA (2001) Interaction of water and dichlorine in the gas phase: an investigation of H2O⋯Cl2 by rotational spectroscopy and ab initio calculations. J Chem Phys 114:6190–6202

    Article  CAS  Google Scholar 

  58. Cooke SA, Cotti G, Evans CM, Holloway JH, Kisiel Z, Legon AC, Thumwood JMA (2001) Pre-reactive complexes in mixtures of water vapour with halogens: characterisation of H2O⋯ClF and H2O⋯F2 by a combination of rotational spectroscopy and ab initio calculations. Chem Eur J 7:2295–2305

    Article  CAS  Google Scholar 

  59. Tyler JK, Sheridan J, Costain CC (1972) Microwave spectra of cyanamide-conclusions from μ a transitions. J Mol Spectrosc 43:248–261

    Article  CAS  Google Scholar 

  60. Mjöberg PJ, Almlöf J (1978) Chem Phys 29:201–208

    Article  Google Scholar 

  61. Hill JG, Hu X (2013) Theoretical insights into the nature of halogen bonding in pre-reactive complexes. Chem Eur J 19:3620–3628

    Article  CAS  Google Scholar 

  62. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  63. Murray JS, Politzer P, Clark T (2010) Halogen bonding: an electrostatically driven highly directional non-covalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  Google Scholar 

  64. Price SL, Stone AJ (1982) The anisotropy of the Cl2-Cl2 pair potential as shown by the crystal structure. Evidence for intermolecular bonding or lone pair effects? Mol Phys 47:1457–1470

    Google Scholar 

  65. Peebles SA, Fowler PW, Legon AC (1995) Anisotropic repulsion in complexes B⋯Cl2 and B⋯HCl: the shape of the chlorine atom-in-a molecule. Chem Phys Lett 240:130–134

    Article  CAS  Google Scholar 

  66. Legon AC, Millen DJ (1987) Hydrogen bonding as a probe for electron densities: limiting gas phase nucleophilicities and electrophilicities of B and HX. J Am Chem Soc 109:356–358

    Article  CAS  Google Scholar 

  67. Legon AC (2014) A reduced radial potential energy function for halogen- and hydrogen-bonded complexes B⋯XY and B…HX, where X and Y are halogen atoms. Phys Chem Chem Phys 16:25199–25199

    Google Scholar 

  68. Boys SF, Bernadi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  69. Nagels N (2013) Building cryospectroscopic bridges: halogen bonding, hydrogen bonding and lone pair⋯π interactions. Ph.D. thesis, Departement Chemie, Universiteit Antwerpen

    Google Scholar 

  70. Hauchecorne D, Nagels N, van der Veken BJ, Herrebout WA (2012) C–X⋯π halogen and C–X⋯π hydrogen bonding: interactions of CF3X (X=Cl, Br, I or H) with ethane and propene. Phys Chem Chem Phys 14:681–690

    Google Scholar 

  71. Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) Halogen bonding in fluoroalkylhalides: a quantum chemical study of increasing fluorine substitution. J Phys Chem A 104:1617–1620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the EPSRC of various aspects of the work reported here is gratefully acknowledged (NRW for Grant No. EP/G026424/1 and ACL for a Senior Fellowship). We are also pleased to acknowledge a Senior Research Fellowship of the University of Bristol, a Leverhulme Emeritus Fellowship (ACL) and Royal Society University Research Fellowships (DPT and NRW). We also thank Jane Murray and Peter Politzer for providing Fig. 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Legon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hill, J.G., Legon, A.C., Tew, D.P., Walker, N.R. (2014). Halogen Bonding in the Gas Phase: A Comparison of the Iodine Bond in B⋯ICl and B⋯ICF3 for Simple Lewis Bases B. In: Metrangolo, P., Resnati, G. (eds) Halogen Bonding I. Topics in Current Chemistry, vol 358. Springer, Cham. https://doi.org/10.1007/128_2014_574

Download citation

Publish with us

Policies and ethics