Advertisement

Prion Proteins pp 257-298 | Cite as

Fungal Prions: Structure, Function and Propagation

  • Mick F. TuiteEmail author
  • Ricardo Marchante
  • Vitaly Kushnirov
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 305)

Abstract

Prions are not uniquely associated with rare fatal neurodegenerative diseases in the animal kingdom; prions are also found in fungi and in particular the yeast Saccharomyces cerevisiae. As with animal prions, fungal prions are proteins able to exist in one or more self-propagating alternative conformations, but show little primary sequence relationship with the mammalian prion protein PrP. Rather, fungal prions represent a relatively diverse collection of proteins that participate in key cellular processes such as transcription and translation. Upon switching to their prion form, these proteins can generate stable, sometimes beneficial, changes in the host cell phenotype. Much has already been learnt about prion structure, and propagation and de novo generation of the prion state through studies in yeast and these findings are reviewed here.

Keywords

Molecular chaperone Podospora anserina Prion Prion propagation Propagons Yeast (Saccharomyces cerevisiae

Notes

Acknowledgements

MFT and VK would like to acknowledge the financial support of the Wellcome Trust (081991) for their research on yeast prions. RM acknowledges studentship support from the FCT (Portugal).

References

  1. 1.
    Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569CrossRefGoogle Scholar
  2. 2.
    Cox BS (1965) [PSI], a cytoplasmic suppressor of super-suppressors in yeast. Heredity 20:505–521CrossRefGoogle Scholar
  3. 3.
    Lacroute F (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 106:519–522Google Scholar
  4. 4.
    Aigle M, Lacroute F (1975) Genetical aspects of [URE3], a non-Mendelian, cytoplasmically-inherited mutation in yeast. Mol Gen Genet 136:327–335CrossRefGoogle Scholar
  5. 5.
    Tuite MF, Lund PM, Futcher AB, Dobson MJ, Cox BS, McLaughlin CS (1982) Relationship of the [psi] factor with other plasmids of Saccharomyces cerevisiae. Plasmid 8:103–111CrossRefGoogle Scholar
  6. 6.
    Cox BS, Tuite MF, McLaughlin CS (1988) The psi factor of yeast: a problem in inheritance. Yeast 4:159–178CrossRefGoogle Scholar
  7. 7.
    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144CrossRefGoogle Scholar
  8. 8.
    Chernoff YO, Derkach IL, Inge-Vechtomov SG (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268–270CrossRefGoogle Scholar
  9. 9.
    Chernoff YO, Ingevechtomov SG, Derkach IL, Ptyushkina MV, Tarunina OV, Dagkesamanskaya AR, Teravanesyan MD (1992) Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae. Yeast 8:489–499CrossRefGoogle Scholar
  10. 10.
    Lund PM, Cox BS (1981) Reversion analysis of [psi ] mutations in Saccharomyces cerevisiae. Genet Res 37:173–182CrossRefGoogle Scholar
  11. 11.
    Tuite MF, Mundy CR, Cox BS (1981) Agents that cause a high frequency of genetic change from [psi+] to [psi−] in Saccharomyces cerevisiae. Genetics 98:691–711Google Scholar
  12. 12.
    Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14:4365–4373Google Scholar
  13. 13.
    Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95CrossRefGoogle Scholar
  14. 14.
    Patino MM, Liu JJ, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626CrossRefGoogle Scholar
  15. 15.
    Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1996) Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15:3127–3134Google Scholar
  16. 16.
    Edskes HK, Gray VT, Wickner RB (1999) The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc Natl Acad Sci USA 96:1498–1503CrossRefGoogle Scholar
  17. 17.
    Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S (1997) Self-seeded fibers formed by Sup35, the protein determinant of PSI+, a heritable prion-like factor of S. cerevisiae. Cell 89:811–819CrossRefGoogle Scholar
  18. 18.
    Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1997) In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277:381–383CrossRefGoogle Scholar
  19. 19.
    Brachmann A, Baxa U, Wickner RB (2005) Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 24:3082–3092CrossRefGoogle Scholar
  20. 20.
    King CY, Diaz-Avalos R (2004) Protein-only transmission of three yeast prion strains. Nature 428:319–323CrossRefGoogle Scholar
  21. 21.
    Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428:323–328CrossRefGoogle Scholar
  22. 22.
    Kushnirov VV, Ter-Avanesyan MD (1998) Structure and replication of yeast prions. Cell 94:13–16CrossRefGoogle Scholar
  23. 23.
    Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778CrossRefGoogle Scholar
  24. 24.
    Coustou-Linares V, Maddelein ML, Begueret J, Saupe SJ (2001) In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol Microbiol 42:1325–1335CrossRefGoogle Scholar
  25. 25.
    Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ (2002) Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci USA 99:7402–7407CrossRefGoogle Scholar
  26. 26.
    Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158CrossRefGoogle Scholar
  27. 27.
    Tuite MF, Serio TR (2010) The prion hypothesis: from biological anomaly to basic regulatory mechansim. Nat Rev Mol Cell Biol 11:823–833CrossRefGoogle Scholar
  28. 28.
    Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97:11910–11915CrossRefGoogle Scholar
  29. 29.
    Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172CrossRefGoogle Scholar
  30. 30.
    Ross ED, Minton A, Wickner RB (2005) Prion domains: sequences, structures and interactions. Nat Cell Biol 7:1039–1044CrossRefGoogle Scholar
  31. 31.
    Tuite MF (2000) Yeast prions and their prion-forming domain. Cell 100:289–292CrossRefGoogle Scholar
  32. 32.
    Erhardt M, Wegrzyn RD, Deuerling E (2010) Extra N-terminal residues have a profound effect on the aggregation properties of the potential yeast prion protein Mca1. PLoS ONE 5:e9929CrossRefGoogle Scholar
  33. 33.
    Nemecek J, Nakayashiki T, Wickner RB (2009) A prion of yeast metacaspase homolog (Mca1p) detected by a genetic screen. Proc Natl Acad Sci USA 106:1892–1896CrossRefGoogle Scholar
  34. 34.
    Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, Volkov K, Mironova L (2010) Non-Mendelian determinant [ISP +] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci USA 107:10573–10577CrossRefGoogle Scholar
  35. 35.
    Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89:1105–1152CrossRefGoogle Scholar
  36. 36.
    Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrPC): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644CrossRefGoogle Scholar
  37. 37.
    Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170:708–713Google Scholar
  38. 38.
    Cunningham TS, Andhare R, Cooper TG (2000) Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem 275:14408–14414CrossRefGoogle Scholar
  39. 39.
    Du Z, Park KW, Yu H, Fan Q, Li L (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 40:460–465CrossRefGoogle Scholar
  40. 40.
    Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcription co-respressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11:344–349CrossRefGoogle Scholar
  41. 41.
    Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV (2003) Yeast [PSI +] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 278:49636–49643CrossRefGoogle Scholar
  42. 42.
    Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072Google Scholar
  43. 43.
    Byrne LJ, Cole DJ, Cox BS, Ridout MS, Morgan BJ, Tuite MF (2009) The number and transmission of [PSI +] prion seeds (propagons) in the yeast Saccharomyces cerevisiae. PLoS ONE 4:e4670CrossRefGoogle Scholar
  44. 44.
    Eaglestone SS, Cox BS, Tuite MF (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18:1974–1981CrossRefGoogle Scholar
  45. 45.
    True HL, Berlin I, Lindquist SL (2004) Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431:184–187CrossRefGoogle Scholar
  46. 46.
    True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483CrossRefGoogle Scholar
  47. 47.
    Namy O, Duchateau-Nguyen G, Rousset JP (2002) Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol Microbiol 43:641–652CrossRefGoogle Scholar
  48. 48.
    Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J 23:4857–4867CrossRefGoogle Scholar
  49. 49.
    Namy O, Galopier A, Martini C, Matsufuji S, Fabret C, Rousset JP (2008) Epigenetic control of polyamines by the prion [PSI +]. Nat Cell Biol 10:1069–1075CrossRefGoogle Scholar
  50. 50.
    Derkatch IL, Bradley ME, Hong JY, Liebman SW (2001) Prions affect the appearance of other prions: the story of [PIN +]. Cell 106:171–182CrossRefGoogle Scholar
  51. 51.
    Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI +] prion in Saccharomyces cerevisiae. Genetics 147:507–519Google Scholar
  52. 52.
    Osherovich LZ, Weissman JS (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI +] prion. Cell 106:183–194CrossRefGoogle Scholar
  53. 53.
    Patel BK, Liebman SW (2007) “Prion-proof” for [PIN +]: infection with in vitro-made amyloid aggregates of Rnq1p-(132–405) induces [PIN +]. J Mol Biol 365:773–782CrossRefGoogle Scholar
  54. 54.
    Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW (2004) Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI +] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci USA 101:12934–12939CrossRefGoogle Scholar
  55. 55.
    Vitrenko YA, Pavon ME, Stone SI, Liebman SW (2007) Propagation of the [PIN +] prion by fragments of Rnq1 fused to GFP. Curr Genet 51:309–319CrossRefGoogle Scholar
  56. 56.
    Salnikova AB, Kryndushkin DS, Smirnov VN, Kushnirov VV, Ter-Avanesyan MD (2005) Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids. J Biol Chem 280:8808–8812CrossRefGoogle Scholar
  57. 57.
    Derkatch IL, Bradley ME, Masse SVL, Zadorsky SP, Polozkov GV, Inge-Vechtomov SG, Liebman SW (2000) Dependence and independence of [PSI +] and [PIN +]: a two-prion system in yeast? EMBO J 19:1942–1952CrossRefGoogle Scholar
  58. 58.
    Saupe SJ (2007) A short history of small s: a prion of the fungus Podospora anserina. Prion 1:110–115CrossRefGoogle Scholar
  59. 59.
    Deleu C, Clave C, Begueret J (1993) A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podopsora anserina. Genetics 135:45–52Google Scholar
  60. 60.
    Paoletti M, Saupe SJ (2009) Fungal incompatibility: evolutionary origin in pathogen defense? Bioessays 31:1201–1210CrossRefGoogle Scholar
  61. 61.
    Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917CrossRefGoogle Scholar
  62. 62.
    Derkatch IL, Bradley ME, Liebman SW (1998) Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI +] prion. Proc Natl Acad Sci USA 95:2400–2405CrossRefGoogle Scholar
  63. 63.
    Vishveshwara N, Bradley ME, Liebman SW (2009) Sequestration of essential proteins causes prion associated toxicity in yeast. Mol Microbiol 73:1101–1114CrossRefGoogle Scholar
  64. 64.
    Douglas PM, Treusch S, Ren HY, Halfmann R, Duennwald ML, Lindquist S, Cyr DM (2008) Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc Natl Acad Sci USA 105:7206–7211CrossRefGoogle Scholar
  65. 65.
    Beauregard PB, Guérin R, Turcotte C, Lindquist S, Rokeach LA (2009) A nucleolar protein allows viability in the absence of the essential ER-residing molecular chaperone calnexin. J Cell Sci 122:1342–1351CrossRefGoogle Scholar
  66. 66.
    Collin P, Beauregard PB, Elagöz A, Rokeach LA (2004) A non-chromosomal factor allows viability of Schizosaccharomyces pombe lacking the essential chaperone calnexin. J Cell Sci 117:907–918CrossRefGoogle Scholar
  67. 67.
    Roberts BT, Wickner RB (2003) Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev 17:2083–2087CrossRefGoogle Scholar
  68. 68.
    Brown JC, Lindquist S (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 23:2320–2332CrossRefGoogle Scholar
  69. 69.
    Malagnac F, Silar P (2006) Regulation, cell differentiation and protein-based inheritance. Cell Cycle 5:2584–2587CrossRefGoogle Scholar
  70. 70.
    Zordan RE, Galgoczy DJ, Johnson AD (2006) Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci USA 103:12807–12812CrossRefGoogle Scholar
  71. 71.
    Cox BS, Ness F, Tuite MF (2003) Analysis of the generation and segregation of propagons: entities that propagate the [PSI +] prion in yeast. Genetics 165:23–33Google Scholar
  72. 72.
    Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM (2000) Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35:865–876CrossRefGoogle Scholar
  73. 73.
    Kushnirov VV, Kochneva-Pervukhova N, Chechenova MB, Frolova NS, Ter-Avanesyan MD (2000) Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J 19:324–331CrossRefGoogle Scholar
  74. 74.
    Santoso A, Chien P, Osherovich LZ, Weissman JS (2000) Molecular basis of a yeast prion species barrier. Cell 100:277–288CrossRefGoogle Scholar
  75. 75.
    Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936CrossRefGoogle Scholar
  76. 76.
    Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884CrossRefGoogle Scholar
  77. 77.
    Grimminger-Marquardt V, Lashuel HA (2010) Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 93:252–276CrossRefGoogle Scholar
  78. 78.
    Shorter J, Lindquist S (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304:1793–1797CrossRefGoogle Scholar
  79. 79.
    Shorter J, Lindquist S (2006) Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol Cell 23:425–438CrossRefGoogle Scholar
  80. 80.
    King CY, Tittmann P, Gross H, Gebert R, Aebi M, Wuthrich K (1997) Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci USA 94:6618–6622CrossRefGoogle Scholar
  81. 81.
    Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF (2001) The elimination of the yeast [PSI +] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 40:1357–1369CrossRefGoogle Scholar
  82. 82.
    Grimminger V, Richter K, Imhof A, Buchner J, Walter S (2004) The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J Biol Chem 279:7378–7383CrossRefGoogle Scholar
  83. 83.
    Jung GM, Masison DC (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol 43:7–10CrossRefGoogle Scholar
  84. 84.
    Wegrzyn RD, Bapat K, Newnam GP, Zink AD, Chernoff YO (2001) Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol 21:4656–4669CrossRefGoogle Scholar
  85. 85.
    Satpute-Krishnan P, Langseth SX, Serio TR (2007) Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance. PLoS Biol 5:e24CrossRefGoogle Scholar
  86. 86.
    Satpute-Krishnan P, Serio TR (2005) Prion protein remodelling confers an immediate phenotypic switch. Nature 437:262–265CrossRefGoogle Scholar
  87. 87.
    Krzewska J, Melki R (2006) Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO J 25:822–833CrossRefGoogle Scholar
  88. 88.
    Higurashi T, Hines JK, Sahi C, Aron R, Craig EA (2008) Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc Natl Acad Sci USA 105:16596–16601CrossRefGoogle Scholar
  89. 89.
    Tipton KA, Verges KJ, Weissman JS (2008) In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol Cell 32:584–591CrossRefGoogle Scholar
  90. 90.
    Shorter J, Lindquist S (2008) Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J 27:2712–2724CrossRefGoogle Scholar
  91. 91.
    Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82CrossRefGoogle Scholar
  92. 92.
    Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478CrossRefGoogle Scholar
  93. 93.
    Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 19:1325–1333Google Scholar
  94. 94.
    Bruce ME (1993) Scrapie strain variation and mutation. Br Med Bull 49:822–838Google Scholar
  95. 95.
    Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386Google Scholar
  96. 96.
    Krishnan R, Lindquist SL (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772CrossRefGoogle Scholar
  97. 97.
    Toyama BH, Kelly MJ, Gross JD, Weissman JS (2007) The structural basis of yeast prion strain variants. Nature 449:233–237CrossRefGoogle Scholar
  98. 98.
    Uptain SM, Sawicki GJ, Caughey B, Lindquist S (2001) Strains of [PSI +] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J 20:6236–6245CrossRefGoogle Scholar
  99. 99.
    Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW (2002) Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 99:16392–16399CrossRefGoogle Scholar
  100. 100.
    Tanaka M, Collins SR, Toyama BH, Weissman JS (2006) The physical basis of how prion conformations determine strain phenotypes. Nature 442:585–589CrossRefGoogle Scholar
  101. 101.
    Alexandrov IM, Vishnevskaya AB, Ter-Avanesyan MD, Kushnirov VV (2008) Appearance and propagation of polyglutamine-based amyloids in yeast: tyrosine residues enable polymer fragmentation. J Biol Chem 283:15185–15192CrossRefGoogle Scholar
  102. 102.
    Tanaka M, Chien P, Yonekura K, Weissman JS (2005) Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121:49–62CrossRefGoogle Scholar
  103. 103.
    Schlumpberger M, Prusiner SB, Herskowitz I (2001) Induction of distinct [URE3] yeast prion strains. Mol Cell Biol 21:7035–7046CrossRefGoogle Scholar
  104. 104.
    Chien P, Weissman JS (2001) Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410:223–227CrossRefGoogle Scholar
  105. 105.
    Kushnirov VV, Kryndushkin DS, Boguta M, Smirnov VN, Ter-Avanesyan MD (2000) Chaperones that cure yeast artificial [PSI +] and their prion-specific effects. Curr Biol 10:1443–1446CrossRefGoogle Scholar
  106. 106.
    Kalastavadi T, True HL (2010) Analysis of the [RNQ +] prion reveals stability of amyloid fibers as the key determinant of yeast prion variant propagation. J Biol Chem 285:20748–20755CrossRefGoogle Scholar
  107. 107.
    Urakov VN, Vishnevskaya AB, Alexandrov IM, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (2010) Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions. Prion 4:45–52CrossRefGoogle Scholar
  108. 108.
    Osherovich LZ, Cox BS, Tuite MF, Weissman JS (2004) Dissection and design of yeast prions. PLoS Biol 2:442–451CrossRefGoogle Scholar
  109. 109.
    Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261CrossRefGoogle Scholar
  110. 110.
    Prusiner SB, Scott MR, DeArmound SJ, Cohen FE (1998) Prion protein biology. Cell 93:337–348CrossRefGoogle Scholar
  111. 111.
    Chiti F, Dobson C (2006) Protein misfolding, functional amyloid, and human disease. Ann Rev Biochem 75:333–366CrossRefGoogle Scholar
  112. 112.
    Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany K, Lascu I, Schmitter JM, Riek R, Saupe SJ (2003) Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071–2081CrossRefGoogle Scholar
  113. 113.
    DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252CrossRefGoogle Scholar
  114. 114.
    Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 1(91):5355–5358CrossRefGoogle Scholar
  115. 115.
    Perutz MF, Pope BJ, Owen D, Wanker EE, Scherzinger E (2002) Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci USA 99:5596–5600CrossRefGoogle Scholar
  116. 116.
    Liu JJ, Lindquist S (1999) Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400:573–576CrossRefGoogle Scholar
  117. 117.
    Parham SN, Resende CG, Tuite MF (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J 20:2111–2119CrossRefGoogle Scholar
  118. 118.
    Doel SM, McCready SJ, Nierras CR, Cox BS (1994) The dominant PNM2 - mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670Google Scholar
  119. 119.
    Goldfarb L, Brown P, McCombie W, Goldgaber D, Swergold G, Wills P, Cervenakova L, Baron H, Gibbs C, Gajdusek D (1991) Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc Natl Acad Sci USA 88:10926–10930CrossRefGoogle Scholar
  120. 120.
    Krasemann S, Zerr I, Weber T, Poser S, Kretzschmar H, Hunsmann G, Bodemer W (1995) Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Brain Res Mol Brain Res 34:173–176CrossRefGoogle Scholar
  121. 121.
    Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD (2006) The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants. Genetics 172:827–835CrossRefGoogle Scholar
  122. 122.
    Ross E, Baxa U, Wickner R (2005) Scrambled prion domains form prions and amyloid. Mol Cell Biol 24:7206–7213CrossRefGoogle Scholar
  123. 123.
    Shewmaker F, Ross E, Tycko R, Wickner R (2006) Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure. Biochemistry 47:4000–4007CrossRefGoogle Scholar
  124. 124.
    Shewmaker F, Wickner R, Tycko R (2008) Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci USA 103:19754–19759CrossRefGoogle Scholar
  125. 125.
    Kochneva-Pervukhova NV, Paushkin SV, Kushnirov VV, Cox BS, Tuite MF, Ter-Avanesyan MD (1998) Mechanism of inhibition of [PSI +] prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J 17:5805–5810CrossRefGoogle Scholar
  126. 126.
    Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676Google Scholar
  127. 127.
    Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966CrossRefGoogle Scholar
  128. 128.
    Bousset L, Thomson NH, Radford SE, Melki R (2002) The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J 21:2903–2911CrossRefGoogle Scholar
  129. 129.
    Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848CrossRefGoogle Scholar
  130. 130.
    Nelson R, Sawaya M, Balbirnie M, Madsen A, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778CrossRefGoogle Scholar
  131. 131.
    Sawaya M, Sambashivan S, Nelson R, Ivanova M, Sievers S, Apostol M, Thompson M, Balbirnie M, Wiltzius J, McFarlane H, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457CrossRefGoogle Scholar
  132. 132.
    van der Wel PC, Hu KN, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846CrossRefGoogle Scholar
  133. 133.
    van der Wel PC, Lewandowski JR, Griffin RG (2007) Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. J Am Chem Soc 129:5117–5130CrossRefGoogle Scholar
  134. 134.
    Diaz-Avalos R, King CY, Wall J, Simon M, Caspar DL (2005) Strain-specific morphologies of yeast prion amyloid fibrils. Proc Natl Acad Sci USA 102:10165–10170CrossRefGoogle Scholar
  135. 135.
    Kishimoto A, Hasegawa K, Suzuki H, Taguchi H, Namba K, Yoshida M (2004) Beta-helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem Biophys Res Commun 315:739–745CrossRefGoogle Scholar
  136. 136.
    Baxa U, Cheng N, Winkler DC, Chiu TK, Davies DR, Sharma D, Inouye H, Kirschner DA, Wickner RB, Steven AC (2005) Filaments of the Ure2p prion protein have a cross-beta core structure. J Struct Biol 150:170–179CrossRefGoogle Scholar
  137. 137.
    Kajava A, Baxa U, Wickner R, Steven A (2004) A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc Natl Acad Sci USA 101:7885–7890CrossRefGoogle Scholar
  138. 138.
    Wasmer C, Lange A, Van Melckebeke H, Siemer A, Riek R, Meier B (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526CrossRefGoogle Scholar
  139. 139.
    Wickner RB, Dyda F, Tycko R (2008) Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register beta-sheet structure. Proc Natl Acad Sci USA 105:2403–2408CrossRefGoogle Scholar
  140. 140.
    Crist CG, Nakayashiki T, Kurahashi H, Nakamura Y (2003) [PHI +], a novel Sup35-prion variant propagated with non-Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104. Genes Cells 8:603–618CrossRefGoogle Scholar
  141. 141.
    Malato L, Dos Reis S, Benkemoun L, Sabate R, Saupe SJ (2007) Role of Hsp104 in the propagation and inheritance of the [Het-s] prion. Mol Biol Cell 18:4803–4812CrossRefGoogle Scholar
  142. 142.
    Cox B, Byrne L, Tuite MF (2007) Prion stability. Prion 1:170–178CrossRefGoogle Scholar
  143. 143.
    Moriyama H, Edskes HK, Wickner RB (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol Cell Biol 20:8916–8922CrossRefGoogle Scholar
  144. 144.
    Liu JJ, Sondheimer N, Lindquist SL (2002) Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI +]. Proc Natl Acad Sci USA 99:16446–16453CrossRefGoogle Scholar
  145. 145.
    Hung GC, Masison DC (2006) N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Genetics 173:611–620CrossRefGoogle Scholar
  146. 146.
    Snider J, Thibault G, Houry WA (2008) The AAA + superfamily of functionally diverse proteins. Genome Biol 9:216CrossRefGoogle Scholar
  147. 147.
    Wendler P, Shorter J, Plisson C, Cashikar AG, Lindquist S, Saibil HR (2007) Atypical AAA + subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 131:1366–1377CrossRefGoogle Scholar
  148. 148.
    Wendler P, Shorter J, Snead D, Plisson C, Clare DK, Lindquist S, Saibil HR (2009) Motor mechanism for protein threading through Hsp104. Mol Cell 34:81–92CrossRefGoogle Scholar
  149. 149.
    Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, Baker TA (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8:230–233CrossRefGoogle Scholar
  150. 150.
    Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96:13732–13737CrossRefGoogle Scholar
  151. 151.
    Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem 274:28083–28086CrossRefGoogle Scholar
  152. 152.
    Tessarz P, Mogk A, Bukau B (2008) Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol Microbiol 68:87–97CrossRefGoogle Scholar
  153. 153.
    Weibezahn J, Bukau B, Mogk A (2004) Unscrambling an egg: protein disaggregation by AAA + proteins. Microb Cell Fact 3:1–12CrossRefGoogle Scholar
  154. 154.
    Kryndushkin DS, Smirnov VN, Ter-Avanesyan MD, Kushnirov VV (2002) Increased expression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp 0 can cure yeast prions. J Biol Chem 277:23702–23708CrossRefGoogle Scholar
  155. 155.
    Haslberger T, Zdanowicz A, Brand I, Kirstein J, Turgay K, Mogk A, Bukau B (2008) Protein disaggregation by the AAA + chaperone ClpB involves partial threading of looped polypeptide segments. Nat Struct Mol Biol 15:641–650CrossRefGoogle Scholar
  156. 156.
    Cashikar AG, Duennwald M, Lindquist SL (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280:23869–23875CrossRefGoogle Scholar
  157. 157.
    Haslbeck M, Miess A, Stromer T, Walter S, Buchner J (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 280:23861–23868CrossRefGoogle Scholar
  158. 158.
    Greene MK, Maskos K, Landry SJ (1998) Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc Natl Acad Sci USA 95:6108–6113CrossRefGoogle Scholar
  159. 159.
    Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ (2003) The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42:4937–4944CrossRefGoogle Scholar
  160. 160.
    Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571CrossRefGoogle Scholar
  161. 161.
    Jones GW, Tuite MF (2005) Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 27:823–832CrossRefGoogle Scholar
  162. 162.
    Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 19:8103–8112Google Scholar
  163. 163.
    Chacinska A, Szczesniak B, Kochneva-Pervukhova NV, Kushnirov VV, Ter-Avanesyan MD, Boguta M (2001) Ssb1 chaperone is a [PSI +] prion-curing factor. Curr Genet 39:62–67CrossRefGoogle Scholar
  164. 164.
    Jung G, Jones G, Wegrzyn RD, Masison DC (2000) A role for cytosolic Hsp70 in yeast [PSI +] prion propagation and [PSI +] as a cellular stress. Genetics 156:559–570Google Scholar
  165. 165.
    Song Y, Masison DC (2005) Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). J Biol Chem 280:34178–34185CrossRefGoogle Scholar
  166. 166.
    Needham P, Masison D (2008) Prion-impairing mutations in Hsp70 chaperone Ssa1: effects on ATPase and chaperone activities. Arch Biochem Biophys 478:167–174CrossRefGoogle Scholar
  167. 167.
    Schwimmer C, Masison D (2002) Antagonistic interactions between yeast [PSI +] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol 22:3590–3598CrossRefGoogle Scholar
  168. 168.
    Roberts B, Moriyama H, Wickner R (2004) [URE3] prion propagation is abolished by a mutation of the primary cytosolic Hsp70 of budding yeast. Yeast 21:107–117CrossRefGoogle Scholar
  169. 169.
    Sondheimer N, Lopez N, Craig EA, Lindquist S (2001) The role of Sis1 in the maintenance of the [RNQ +] prion. EMBO J 20:2435–2442CrossRefGoogle Scholar
  170. 170.
    Jones G, Song Y, Chung S, Masison DC (2004) Propagation of Saccharomyces cerevisiae [PSI +] prion is impaired by factors that regulate Hsp70 substrate binding. Mol Cell Biol 24:3928–3937CrossRefGoogle Scholar
  171. 171.
    Kryndushkin D, Wickner R (2007) Nucleotide exchange factors for Hsp70s are required for [URE3] prion propagation in Saccharomyces cerevisiae. Mol Cell Biol 18:2149–2154CrossRefGoogle Scholar
  172. 172.
    Sadlish H, Rampelt H, Shorter J, Wegrzyn R, Andréasson C, Lindquist S, Bukau B (2010) Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS ONE 3:e1763CrossRefGoogle Scholar
  173. 173.
    Hainzl O, Wegele H, Richter K, Buchner J (2004) Cns1 is an activator of the Ssa1 ATPase activity. J Biol Chem 279:23267–23273CrossRefGoogle Scholar
  174. 174.
    Wegele H, Haslbeck M, Reinstein J, Buchner J (2003) Sti1 is a novel activator of the Ssa proteins. J Biol Chem 278:25970–25976CrossRefGoogle Scholar
  175. 175.
    Moosavi B, Wongwigkarn J, Tuite MF (2010) Hsp70/Hsp90 co-chaperones are required for efficient Hsp104-mediated elimination of the yeast [PSI +] prion but not for prion propagation. Yeast 27:167–179Google Scholar
  176. 176.
    Reidy M, Masison D (2010) Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI +] prions by Hsp104. Mol Cell Biol 30:3542–3552CrossRefGoogle Scholar
  177. 177.
    Kryndushkin D, Shewmaker F, Wickner R (2008) Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO J 27:2725–2735CrossRefGoogle Scholar
  178. 178.
    Canello T, Frid K, Gabizon R, Lisa S, Friedler A, Moskovitz J, Gasset M (2010) Oxidation of Helix-3 methionines precedes the formation of PK resistant PrP. PLoS Pathog 6:e1000977CrossRefGoogle Scholar
  179. 179.
    DeMarco ML, Daggett V (2005) Local environmental effects on the structure of the prion protein. C R Biol 328:847–862CrossRefGoogle Scholar
  180. 180.
    Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321CrossRefGoogle Scholar
  181. 181.
    Lancaster AK, Bardill JP, True HL, Masel J (2010) The spontaneous appearance rate of the yeast prion [PSI +] and its implications for the evolution of the evolvability properties of the [PSI +] system. Genetics 184:393–400CrossRefGoogle Scholar
  182. 182.
    Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7:683–692CrossRefGoogle Scholar
  183. 183.
    Tuite MF, Stojanovski K, Ness F, Merritt G, Koloteva-Levine N (2008) Cellular factors important for the de novo formation of yeast prions. Biochem Soc Trans 36:1083–1087CrossRefGoogle Scholar
  184. 184.
    Tyedmers JM, Madariaga ML, Lindquist SL (2008) Prion switching in response to environmental stress. PLoS Biol 6:2605–2613CrossRefGoogle Scholar
  185. 185.
    Tyedmers J, Treusch S, Dong J, McCaffery JM, Bevis B, Lindquist S (2010) Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. Proc Natl Acad Sci USA 107:8633–8638CrossRefGoogle Scholar
  186. 186.
    Scheibel T, Lindquist SL (2001) The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat Struct Biol 8:958–962CrossRefGoogle Scholar
  187. 187.
    Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095CrossRefGoogle Scholar
  188. 188.
    Kawai-Noma S, Pack CG, Kojidani T, Asakawa H, Hiraoka Y, Kinjo M, Haraguchi T, Taguchi H, Hirata A (2010) In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. J Cell Biol 190:223–231CrossRefGoogle Scholar
  189. 189.
    Sideri TC, Stojanovski K, Tuite MF, Grant CM (2010) Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI +] prion in yeast. Proc Natl Acad Sci USA 107:6394–6399CrossRefGoogle Scholar
  190. 190.
    Colombo G, Meli M, Morra G, Gabizon R, Gasset M (2009) Methionine sulfoxides on prion protein Helix-3 switch on the alpha-fold destabilization required for conversion. PLoS ONE 4:e4296CrossRefGoogle Scholar
  191. 191.
    Wolschner C, Giese A, Kretzschmar H, Huber R, Moroder L, Budisa N (2009) Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proc Natl Acad Sci USA 106:7756–7761CrossRefGoogle Scholar
  192. 192.
    Resende CG, Outeiro TF, Sands L, Lindquist S, Tuite MF (2003) Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol Microbiol 49:1005–1017CrossRefGoogle Scholar
  193. 193.
    Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB (2005) Yeast prions [URE3] and [PSI +] are diseases. Proc Natl Acad Sci USA 102:10575–10580CrossRefGoogle Scholar
  194. 194.
    Mottagui-Tabar S, Tuite M, Isaksson L (1998) The influence of 5′ codon context on translation termination in Saccharomyces cerevisiae. Eur J Biochem 257:249–254CrossRefGoogle Scholar
  195. 195.
    Namy O, Hatin I, Rousset J (2001) Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2:787–793CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mick F. Tuite
    • 1
    Email author
  • Ricardo Marchante
    • 1
  • Vitaly Kushnirov
    • 2
  1. 1.Kent Fungal Group, School of BiosciencesUniversity of KentCanterburyUK
  2. 2.Russian Cardiology Scientific Industrial ComplexMoscowRussia

Personalised recommendations