Skip to main content
Log in

Propagation of the [PIN +] prion by fragments of Rnq1 fused to GFP

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Prions are viewed as enigmatic infectious entities whose genetic properties are enciphered solely in an array of self-propagating protein aggregate conformations. Rnq1, a yeast protein with yet unknown function, forms a prion named [PIN +] for its ability to facilitate the de novo induction of another prion, [PSI +]. Here we investigate a set of RNQ1 truncations that were designed to cover major Rnq1 sequence elements similar to those important for the propagation of other yeast prions: a region rich in asparagines and glutamines and several types of oligopeptide repeats. Proteins encoded by these RNQ1 truncations were tested for their ability to (a) join (decorate) pre-existing [PIN +] aggregates made of wild-type Rnq1 and (b) maintain the heritable aggregated state in the absence of wild-type RNQ1. While the possible involvement of particular sequence elements in the propagation of [PIN +] is discussed, the major result is that the efficiency of transmission of [PIN +] from wild-type Rnq1 to a fragment decreased with the fragment’s length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aron R, Lopez N, Walter W, Craig EA, Johnson J (2005) In vivo bipartite interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae. Genetics 169:1873–1882

    Article  PubMed  CAS  Google Scholar 

  • Bagriantsev S, Liebman SW (2004) Specificity of prion assembly in vivo. [PSI+] and [PIN+] form separate structures in yeast. J Biol Chem 279:51042–51048

    Article  PubMed  CAS  Google Scholar 

  • Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci USA 98:2375–2380

    Article  PubMed  CAS  Google Scholar 

  • Baxa U, Taylor KL, Wall JS, Simon MN, Cheng N, Wickner RB, Steven AC (2003) Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J Biol Chem 278:43717–43727

    Article  PubMed  CAS  Google Scholar 

  • Borchsenius AS, Wegrzyn RD, Newnam GP, Inge-Vechtomov SG, Chernoff YO (2001) Yeast prion protein derivative defective in aggregate shearing and production of new ‘seeds’. EMBO J 20:6683–6691

    Article  PubMed  CAS  Google Scholar 

  • Bousset L, Thual C, Belrhali H, Morera S, Melki R (2002) Structure and assembly properties of the yeast prion Ure2p. C R Biol 325:3–8

    Article  PubMed  CAS  Google Scholar 

  • Bradley ME, Liebman SW (2003) Destabilizing interactions among [PSI(+)] and [PIN(+)] yeast prion variants. Genetics 165:1675–1685

    PubMed  CAS  Google Scholar 

  • Bradley ME, Liebman SW (2004) The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol 51:1649–1659

    Article  PubMed  CAS  Google Scholar 

  • Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW (2002) Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 99(Suppl 4):16392–16399

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Krause G, Reif B (2005) Structure and orientation of peptide inhibitors bound to beta-amyloid fibrils. J Mol Biol 354:760–776

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO (2001) Mutation processes at the protein level: is Lamarck back? Mutat Res 488:39–64

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Derkach IL, Inge-Vechtomov SG (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 24:268–270

    Article  PubMed  CAS  Google Scholar 

  • Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  • Conde J, Fink GR (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci USA 73:3651–3655

    Article  PubMed  CAS  Google Scholar 

  • Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 170:708–713

    PubMed  CAS  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778

    Article  PubMed  CAS  Google Scholar 

  • Cox BS, Tuite MF, McLaughlin CS (1988) The psi factor of yeast: a problem in inheritance. Yeast 4:159–178

    Article  PubMed  CAS  Google Scholar 

  • Crist CG, Nakayashiki T, Kurahashi H, Nakamura Y (2003) [PHI+], a novel Sup35-prion variant propagated with non-Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104. Genes Cells 8:603–618

    Article  PubMed  CAS  Google Scholar 

  • DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW (1996) Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386

    PubMed  CAS  Google Scholar 

  • Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519

    PubMed  CAS  Google Scholar 

  • Derkatch IL, Bradley ME, Hong JY, Liebman SW (2001) Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 106:171–182

    Article  PubMed  CAS  Google Scholar 

  • Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW (2004) Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci USA 101:12934–12939

    Article  PubMed  CAS  Google Scholar 

  • Fay N, Redeker V, Savistchenko J, Dubois S, Bousset L, Melki R (2005) Structure of the prion Ure2p in protein fibrils assembled in vitro. J Biol Chem 280:37149–37158

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Gerstein M (2003) A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol 4:R40

    Article  PubMed  Google Scholar 

  • Jung G, Jones G, Masison DC (2002) Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc Natl Acad Sci USA 99:9936–9941

    Article  PubMed  CAS  Google Scholar 

  • Krishnan R, Lindquist SL (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772

    Article  PubMed  CAS  Google Scholar 

  • Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 278:49636–49643

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG (1988) Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66:45–54

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Laws DD, Bitter HM, Liu K, Ball HL, Kaneko K, Wille H, Cohen FE, Prusiner SB, Pines A, Wemmer DE (2001) Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc Natl Acad Sci USA 98:11686–11690

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Lindquist S (1999) Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400:573–576

    Article  PubMed  CAS  Google Scholar 

  • Lopez N, Aron R, Craig EA (2003) Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+]. Mol Biol Cell 14:1172–1181

    Article  PubMed  CAS  Google Scholar 

  • Maddelein ML, Wickner RB (1999) Two prion-inducing regions of Ure2p are nonoverlapping. Mol Cell Biol 19:4516–4524

    PubMed  CAS  Google Scholar 

  • Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95

    Article  PubMed  CAS  Google Scholar 

  • Meriin AB, Zhang X, Miliaras NB, Kazantsev A, Chernoff YO, McCaffery JM, Wendland B, Sherman MY (2003) Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 23:7554–7565

    Article  PubMed  CAS  Google Scholar 

  • Moriyama H, Edskes HK, Wickner RB (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol Cell Biol 20:8916–8922

    Article  PubMed  CAS  Google Scholar 

  • Natsoulis G, Winston F, Boeke JD (1994) The SPT10 and SPT21 genes of Saccharomyces cerevisiae. Genetics 136:93–105

    PubMed  CAS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  CAS  Google Scholar 

  • Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE et al (1985) A cellular gene encodes scrapie PrP 27–30 protein. Cell 40:735–746

    Article  PubMed  CAS  Google Scholar 

  • Osherovich LZ, Cox BS, Tuite MF, Weissman JS (2004) Dissection and design of yeast prions. PLoS Biol 2:E86

    Article  PubMed  Google Scholar 

  • Parham SN, Resende CG, Tuite MF (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J 20:2111–2119

    Article  PubMed  CAS  Google Scholar 

  • Patino MM, Liu JJ, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626

    Article  PubMed  CAS  Google Scholar 

  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1996) Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15:3127–3134

    PubMed  CAS  Google Scholar 

  • Perutz MF, Staden R, Moens L, De Baere I (1993) Polar zippers. Curr Biol 3:249–253

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (2004) In: Prusiner SB (ed) Prion Biology and Diseases, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–61

  • Prusiner SB, Fuzi M, Scott M, Serban D, Serban H, Taraboulos A, Gabriel JM, Wells GA, Wilesmith JW, Bradley R et al (1993) Immunologic and molecular biologic studies of prion proteins in bovine spongiform encephalopathy. J Infect Dis 167:602–613

    PubMed  CAS  Google Scholar 

  • Resende CG, Outeiro TF, Sands L, Lindquist S, Tuite MF (2003) Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol Microbiol 49:1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Rogers M, Yehiely F, Scott M, Prusiner SB (1993) Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells. Proc Natl Acad Sci USA 90:3182–3186

    Article  PubMed  CAS  Google Scholar 

  • Ross ED, Baxa U, Wickner RB (2004) Scrambled prion domains form prions and amyloid. Mol Cell Biol 24:7206–7213

    Article  PubMed  CAS  Google Scholar 

  • Ross ED, Edskes HK, Terry MJ, Wickner RB (2005a) Primary sequence independence for prion formation. Proc Natl Acad Sci USA 102:12825–12830

    Article  CAS  Google Scholar 

  • Ross ED, Minton A, Wickner RB (2005b) Prion domains: sequences, structures and interactions. Nat Cell Biol 7:1039–1044

    CAS  Google Scholar 

  • Schlumpberger M, Wille H, Baldwin MA, Butler DA, Herskowitz I, Prusiner SB (2000) The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein. Protein Sci 9:440–451

    Article  PubMed  CAS  Google Scholar 

  • Schlumpberger M, Prusiner SB, Herskowitz I (2001) Induction of distinct [URE3] yeast prion strains. Mol Cell Biol 21:7035–7046

    Article  PubMed  CAS  Google Scholar 

  • Serpell LC, Sunde M, Blake CC (1997) The molecular basis of amyloidosis. Cell Mol Life Sci 53:871–887

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    Article  PubMed  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172

    Article  PubMed  CAS  Google Scholar 

  • Spassov S, Beekes M, Naumann D (2006) Structural differences between TSEs strains investigated by FT-IR spectroscopy. Biochim Biophys Acta 1760:1138–1149

    PubMed  CAS  Google Scholar 

  • Stirling PC, Lundin VF, Leroux MR (2003) Getting a grip on non-native proteins. EMBO Rep 4:565–570

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428:323–328

    Article  PubMed  CAS  Google Scholar 

  • Taylor KL, Cheng N, Williams RW, Steven AC, Wickner RB (1999) Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339–1343

    Article  PubMed  CAS  Google Scholar 

  • Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676

    PubMed  CAS  Google Scholar 

  • Vitrenko YA, Gracheva EO, Richmond JE, Liebman SW (2006) Visualization of aggregation of the RNQ1 prion domain and cross-seeding interactions with Sup35NM. J Biol Chem 282:1779–1787. Epub 2006 Nov 22

    Google Scholar 

  • Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569

    Article  PubMed  CAS  Google Scholar 

  • Wickner RB, Edskes HK, Roberts BT, Baxa U, Pierce MM, Ross ED, Brachmann A (2004) Prions: proteins as genes and infectious entities. Genes Dev 18:470–485

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Lei H, Duan Y (2005) The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent. Biophys J 88:2897–2906

    Article  PubMed  CAS  Google Scholar 

  • Zanuy D, Ma B, Nussinov R (2003) Short peptide amyloid organization: stabilities and conformations of the islet amyloid peptide NFGAIL. Biophys J 84:1884–1894

    Article  PubMed  CAS  Google Scholar 

  • Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M (1995) Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 14:4065–4072

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Irina Derkatch for the pID116 plasmid. This work was supported by a grant from the National Institutes of Health (GM56350 to S.W.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan W. Liebman.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitrenko, Y.A., Pavon, M.E., Stone, S.I. et al. Propagation of the [PIN +] prion by fragments of Rnq1 fused to GFP. Curr Genet 51, 309–319 (2007). https://doi.org/10.1007/s00294-007-0127-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0127-0

Keywords

Navigation