Skip to main content

Crosstalk Between the Sporophyte and the Gametophyte During Anther and Ovule Development in Angiosperms

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Part of the book series: Progress in Botany ((BOTANY,volume 82))

  • 844 Accesses

Abstract

A proper development of the male and female germlines is key to the reproductive success of plants. As a result of the development of the male and female germlines the male (pollen) and female (embryo sac) gametophytes will be produced. After pollination, pollen–pistil interaction, fertilization, embryogenesis, and finally, the formation of the persistent propagule – the seed will take place. During reproductive cell development in angiosperms, male and female germlines develop inside the sporophytic tissues. The male germline develops in the anther surrounded by the tapetum whereas the female germline initiates in the nucellus composed of a single or several layers of somatic cells of the ovule. Initially, the cells that will remain somatic and those that will develop in the germlines are morphologically identical. But, later on, cell differentiation starts with the transition from somatic to reproductive fate and remarkable differences arise during germline development and mainly after meiosis. Such differences are also observed in the somatic cells that surround the germline and are closely linked to the crosstalk between the sporophyte tissues and the germline, a key process for the formation of the male and female gametes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert B, Ressayre A, Nadot S (2011) Correlation between pollen aperture pattern and callose deposition in late tetrad stage in three species producing atypical pollen grains. Am J Bot 98:189–196

    PubMed  Google Scholar 

  • Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell 17:3337–3349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    CAS  PubMed  Google Scholar 

  • Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toryyama K (2005) The HKM gene, which is identical to the MS1 gene of Arabidopsis thaliana, is essential for primexine formation and exine pattern formation. Sex Plant Reprod 18:1–7

    CAS  Google Scholar 

  • Armenta-Medina A, Demesa-Arévalo E, Vielle-Calzada JP (2011) Epigenetic control of cell specification during female gametogenesis. Sex Plant Reprod 24:137–147

    PubMed  Google Scholar 

  • Bachelier JB, Friedman WE (2011) Female gamete competition in an ancient angiosperm lineage. Proc Natl Acad Sci 108:12360–12365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajon C, Horlow C, Motamayor JC, Sauvanet A, Robert D (1999) Megasporogenesis in Arabidopsis thaliana L.: an ultrastructural study. Sex. Plant Reprod 12:99–109

    Google Scholar 

  • Baker SC, Robinson-Beers K, Villanueva JM, Gaiser JC, Gasser CS (1997) Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145:1109–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bencivenga S, Simonini S, Benková E, Colombo L (2012) The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:2886–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    CAS  PubMed  Google Scholar 

  • Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    CAS  PubMed  Google Scholar 

  • Cao L, Wang S, Venglat P, Zhao L, Cheng Y, Ye S, Ye S, Qin Y, Datla R, Zhou Y (2018) Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genet 14:e1007230

    PubMed  PubMed Central  Google Scholar 

  • Carman JG, Crane CF, Riera-Lizarazu O (1991) Comparative histology of cell walls during meiotic and apomeiotic megasporogenesis in two hexaploid Australasian Elymus species. Crop Sci 31:1527

    Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Celebrin D, Napoli N, Ghelli R, Brunetti P, Costantino P, Cardarelli M (2017) An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. New Phytol 213:1194–1207

    Google Scholar 

  • Clement C, Audran JC (1995) Anther wall layers control pollen sugar nutrition in Lilium. Protoplasma 187:172–181

    Google Scholar 

  • Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035

    CAS  PubMed  Google Scholar 

  • Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis somatic embryogenesis receptor kinases1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa ML, Sobral R, Ribeiro Costa MM, Amorim MI, Coimbra S (2015) Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Ann Bot 115:81–92

    CAS  PubMed  Google Scholar 

  • Echlin P (1971) The role of the tapetum during microsporogenesis of angiosperms. In: Pollen. Butterworth-Heinemann, Oxford, pp 41–61

    Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enns LC, Kanaoka MM, Torii KU, Comai L, Okada K, Cleland RE (2005) Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Mol Biol 58:333–349

    CAS  PubMed  Google Scholar 

  • Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    CAS  PubMed  Google Scholar 

  • Forestan C, Farinati S, Varotto S (2012) The maize PIN gene family of auxin transporters. Front Plant Sci 3:16

    PubMed  PubMed Central  Google Scholar 

  • Franchi G, Pacini E (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst Evol 7:1–11

    Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2019) The endothelium in seeds of early angiosperms. New Phytol 224:1419–1424

    PubMed  Google Scholar 

  • Gaiser JC, Robinson-Beers K, Gasser CS (1995) The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules. Plant Cell 7:333–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser CS, Broadhvest J, Hauser BA (1998) Genetic analysis of ovule development. Annu Rev Plant Physiol Plant Mol Biol 49:1–24

    CAS  PubMed  Google Scholar 

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57:876–891

    PubMed  PubMed Central  Google Scholar 

  • Gross-Hardt R, Lenhard M, Laux T (2002) WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:1129–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harder L, Johnson S (2008) Function and evolution of aggregated pollen in angiosperms. Int J Plant Sci 169:59–78

    Google Scholar 

  • Heslop-Harrison J (1979) The forgotten generation: some thoughts on the genetics and physiology of angiosperm gametophytes. In: The Bateson lecture: proceedings of the fourth John Innes symposium, pp 1–14

    Google Scholar 

  • Hofmesiter W (1851) Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen (Moose, Farrn, Equisetaceen, Rhizokarpeen and Lykopodiaceen) und der Samenbildung der Coniferen. Friedrich Hofmeister, Leipzig

    Google Scholar 

  • Hong L, Tang D, Shen Y, Hu Q, Wang K, Li M, Lu T, Chang Z (2012) MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytol 196:402–413

    CAS  PubMed  Google Scholar 

  • Jia G, Liu X, Owen HA, Zhao D (2008) Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proc Natl Acad Sci U S A 105:2220–2225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juranic M, Tucker MR, Schultz CJ, Shirley NJ, Taylor JM, Spriggs A, Johnson SD, Bulone V, Koltunow AM (2018) Asexual female gametogenesis involves contact with a sexually-fated megaspore in apomictic Hieracium. Plant Physiol 177:1027–1049.

    Google Scholar 

  • Kapil RN, Tiwari SC (1978) The integumentary tapetum. Bot Rev 44:457–490

    Google Scholar 

  • Kelley DR, Gasser CS (2009) Ovule development: genetic trends and evolutionary considerations. Sex Plant Reprod 22:229–234

    PubMed  PubMed Central  Google Scholar 

  • Kinoshita-Tsujimura K, Kakimoto T (2011) Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana. Plant Signal Behav 6:66–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  • Lehman TA, Sanguinet KA (2019) Auxin and cell wall crosstalk as revealed by the Arabidopsis thaliana cellulose synthase mutant radially swollen 1. Plant Cell Physiol 60:1487–1503

    CAS  PubMed  Google Scholar 

  • Leszczuk A, Szczuka E (2018) Arabinogalactan proteins: immunolocalization in the developing ovary of a facultative apomict Fragaria x ananassa (Duch.). Plant Physiol Biochem 123:24–33

    CAS  PubMed  Google Scholar 

  • Lieber D, Lora J, Schrempp S, Lenhard M, Laux T (2011) Arabidopsis WIH1 and WIH2 genes act in the transition from somatic to reproductive cell fate. Curr Biol 21:1009–1017

    CAS  PubMed  Google Scholar 

  • Lituiev DS, Krohn NG, Müller B, Jackson D, Hellriegel B, Dresselhaus T, Grossniklaus U (2013) Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development 140:4544–4553

    CAS  PubMed  Google Scholar 

  • Lora J, Hormaza JI (2018) Pollen wall development in mango (Mangifera indica L., Anacardiaceae). Plant Reprod 31(4):385–397, 1–13

    CAS  PubMed  Google Scholar 

  • Lora J, Testillano PS, Risueño MC, Hormaza JI, Herrero M (2009) Pollen development in Annona cherimola Mill. (Annonaceae). Implications for the evolution of aggregated pollen. BMC Plant Biol 9:129

    PubMed  PubMed Central  Google Scholar 

  • Lora J, Hormaza JI, Herrero M, Gasser CS (2011) Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proc Natl Acad Sci U S A 108:5461–5465

    PubMed  PubMed Central  Google Scholar 

  • Lora J, Herrero M, Hormaza JI (2014) Microspore development in Annona (Annonaceae): differences between monad and tetrad pollen. Am J Bot 101:1508–1518

    PubMed  Google Scholar 

  • Lora J, Hormaza JI, Herrero M (2016) The diversity of the pollen tube pathway in plants: toward an increasing control by the sporophyte. Front Plant Sci 7:107

    PubMed  PubMed Central  Google Scholar 

  • Lora J, Herrero M, Tucker MR, Hormaza JI (2017) The transition from somatic to germline identity shows conserved and specialized features during angiosperm evolution. New Phytol 216:495–509

    CAS  PubMed  Google Scholar 

  • Lora J, Laux T, Hormaza JI (2019a) The role of the integuments in pollen tube guidance in flowering plants. New Phytol 221:1074–1089. https://doi.org/10.1111/nph.15420

    Article  CAS  PubMed  Google Scholar 

  • Lora J, Yang X, Tucker MR (2019b) Establishing a framework for female germline initiation in the plant ovule. J Exp Bot 70:2937–2949

    CAS  PubMed  Google Scholar 

  • Ma J, Duncan D, Morrow DJ, Fernandes J, Walbot V (2007) Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types. Plant J 50:637–648

    CAS  PubMed  Google Scholar 

  • Maciel-Silva AS, Porto KC (2014) Reproduction in bryophytes. In: Ramawat KG, Mérillon JM, Shivanna KR (eds) Reproductive biology of plants. Taylor & Francis, New York

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Marsch-Martínez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zúñiga-Mayo VM, de Folter S (2012) The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant J 72:222–234

    PubMed  Google Scholar 

  • McCormick S (1993) Male gametophyte development. Plant Cell 5:1265–1275

    PubMed  PubMed Central  Google Scholar 

  • Medina FJ, Risueño MC, Rodriguez-Garsia MI (1981) Evolution of the cytoplasmic organelles during female meiosis in Pisum sativum L. Planta 151:215–225

    CAS  PubMed  Google Scholar 

  • Nepi M, Franchi GG, Pacini E (2001) Pollen hydration status at dispersal: cytophysiological features and strategies. Protoplasma 216:171–180

    CAS  PubMed  Google Scholar 

  • Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15:1728–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacini E (1990) Tapetum and microspore function. In: Microspores: evolution and ontogeny. Academic Press, London, pp 213–237

    Google Scholar 

  • Pacini E, Franchi GG (1988) Amylogenesis and amylolysis during pollen grain development. In: Sexual reproduction in higher plants. Springer, Berlin, pp 181–186

    Google Scholar 

  • Pacini E, Franchi GG, Hesse M (1985) The tapetum - its form, function, and possible phylogeny in embryophyta. Plant Syst Evol 149:155–185

    Google Scholar 

  • Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228:73–77

    CAS  PubMed  Google Scholar 

  • Peel MD, Carman JG, Leblanc O (1997) Megasporocyte callose in apomictic buffelgrass, Kentucky bluegrass, Pennisetum squamulatum Fresen, Tripsacum L., and weeping lovegrass. Crop Sci 37:724

    Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446

    PubMed  PubMed Central  Google Scholar 

  • Pinto SC, Mendes MA, Coimbra S, Tucker MR (2019) Revisiting the female germline and its expanding toolbox. Trends Plant Sci 24:455–467

    CAS  PubMed  Google Scholar 

  • Polowick PL, Sawhney VK (1993) Differentiation of the tapetum during microsporogenesis in tomato (Lycopersicon esculentum Mill.), with special reference to the tapetal cell wall. Ann Bot 72:595–605

    Google Scholar 

  • Preuss D, Rhee SY, Davis RW (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264:1458–1460

    CAS  PubMed  Google Scholar 

  • Quilichini TD, Douglas CJ, Samuels AL (2014) New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot 114:1189–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavan V (1988) Anther and pollen development in rice (Oryza sativa). Am J Bot 75:183–196

    Google Scholar 

  • Rhee SY, Osborne E, Poindexter PD, Somerville CR (2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133:1170–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodkiewicz B (1970) Callose in cell walls during megasporogenesis in angiosperms. Planta 93:39–47

    CAS  PubMed  Google Scholar 

  • Rudall PJ (1997) The nucellus and chalaza in monocotyledons: structure and systematics. Bot Rev 63:140–181

    Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96:11664–11669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Wuest S, Vijverberg K, Baroux C, Grossniklaus U (2011) Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biol 9:e1001155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneitz K, Hulskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749

    Google Scholar 

  • Sheridan WF, Avalkina NA, Shamrov II, Batygina TB, Golubovskaya IN (1996) The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 142:1009–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan WF, Golubeva EA, Abrhamova LI, Golubovskaya IN (1999) The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153:933–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Cui M, Yang L, Kim YJ, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753

    CAS  PubMed  Google Scholar 

  • Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    CAS  PubMed  Google Scholar 

  • Sporne KR (1969) The ovule as an indicator of evolutionary status in angiosperms. New Phytol 68:555–566

    Google Scholar 

  • Takaso T, Bouman F (1986) Ovule and seed ontogeny in Gnetum gnemon L. Bot Mag (Tokyo) 99:241–266

    Google Scholar 

  • Tucker MR, Koltunow AM (2014) Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants. Curr Opin Plant Biol 17:137–145

    CAS  PubMed  Google Scholar 

  • Tucker MR, Paech NA, Willemse MT, Koltunow AM (2001) Dynamics of callose deposition and beta-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium. Planta 212:487–498

    CAS  PubMed  Google Scholar 

  • Tucker MR, Okada T, Hu Y, Scholefield A, Taylor JM, Koltunow AM (2012a) Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139:1399–1404

    CAS  PubMed  Google Scholar 

  • Tucker MR, Okada T, Johnson SD, Takaiwa F, Koltunow AM (2012b) Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium. J Exp Bot 63:3229–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JW, Doyle JA (1975) The bases of angiosperm phylogeny: palynology. Ann Missouri Bot Gard 62:664

    Google Scholar 

  • Wang CJ, Nan GL, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya IN, Harper L, Egger R, Walbot V, Cande WZ (2012) Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development 139:2594–2603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

    CAS  PubMed  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26:1544–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:2108–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, Ye D (2003) Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SL, Jiang L, Puah CS, Xie LF, Zhang XQ, Chen LQ, Yang WC, Ye D (2005) Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with excess microsporocytes1/extra sporogenous cells. Plant Physiol 139:186–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Yang H, Zhu Y, Xue J, Wang T, Song T, Yang Z, Wang S (2018) The canonical E2Fs are required for germline development in Arabidopsis. Front Plant Sci 9:638

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    CAS  PubMed  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yanf ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    CAS  PubMed  Google Scholar 

  • Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, de Palma J, Oane R, Gamuyao R, Luo M, Chaudhury A, Hervé P, Xue Q, Bennett J (2008) OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J 54:375–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA, Maruyama D, Forner J, Medzihradszky A, Wijnker E, Harashima H, Lu Y, Schmidt A, Guthörl D, Sahún-Logroño R, Guan Y, Pochon G, Grossniklaus U, Laux T, Higashiyama T, Lohmann JU, Nowack MK, Schnittger A (2017) Retinoblastoma related1 mediates germline entry in Arabidopsis. Science 356:eaaf6532

    PubMed  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal Development and Function 1 is essential for another development and tapetal function for microspore maturation in Arabidopsis. Plant J 55:266–277

    Google Scholar 

  • Zhu J, Lou Y, Xu X, Yang ZN (2011) A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol 53:892–900

    Google Scholar 

  • Zurcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Muller B (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–1075

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Economía y Competitividad – European Regional Development Fund, European Union (AGL2015-74071-JIN, AGL2016-77267-R, PDI2019-109566RB-IOO) and Junta de AndalucÚa (P18-RT-3272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Lora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lora, J., Hormaza, J.I. (2020). Crosstalk Between the Sporophyte and the Gametophyte During Anther and Ovule Development in Angiosperms. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_50

Download citation

Publish with us

Policies and ethics