Regulating Social Exchanges Between Personality-Based Non-transparent Agents

  • G. P. Dimuro
  • A. C. R. Costa
  • L. V. Gonçalves
  • A. Hübner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


This paper extends the scope of the model of regulation of social exchanges based on the concept of a supervisor of social equilibrium. We allow the supervisor to interact with personality-based agents that control the supervisor access to their internal states, behaving either as transparent agents (agents that allow full external access to their internal states) or as non-transparent agents (agents that restrict such external access). The agents may have different personality traits, which induce different attitudes towards both the regulation mechanism and the possible profits of social exchanges. Also, these personality traits influence the agents’ evaluation of their current status. To be able to reason about the social exchanges among personality-based non-transparent agents, the equilibrium supervisor models the system as a Hidden Markov Model.


Personality Trait Hide Markov Model Multiagent System Social Exchange Material Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castelfranchi, C.: Engineering social order. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) Engineer. Societ. in Agents World, pp. 1–18. Springer, Berlin (2000)CrossRefGoogle Scholar
  2. 2.
    Homans, G.C.: The Human Group. Harcourt, Brace & World, New York (1950)Google Scholar
  3. 3.
    Dimuro, G.P., Costa, A.C.R., Palazzo, L.A.M.: Systems of exchange values as tools for multi-agent organizations. Journal of the Brazilian Computer Society, Special Issue on Agents’ Organizations 11, 31–50 (2005)Google Scholar
  4. 4.
    Dimuro, G.P., Costa, A.C.R.: Exchange values and self-regulation of exchanges in multi-agent systems: the provisory, centralized model. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 75–89. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Piaget, J.: Sociological Studies. Routlege, London (1995)Google Scholar
  6. 6.
    Dimuro, G.P., Costa, A.C.R., Gonçalves, L.V., Hübner, A.: Centralized Regulation of Social Exchanges Between Personality-Based Agents. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 338–355. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Antunes, L., Coelho, H.: Decisions based upon multiple values: the BVG agent architecture. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 297–311. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Miceli, M., Castelfranchi, C.: The role of evaluation in cognition and social interaction. In: Dautenhahn, K. (ed.) Human cognition and agent technology, pp. 225–262. John Benjamins, Amsterdam (2000)Google Scholar
  9. 9.
    Walsh, W.E., Wellman, M.P.: A market protocol for distributed task allocation. In: Proc. III Intl. Conf. on Multiagent Systems, Paris, pp. 325–332 (1998)Google Scholar
  10. 10.
    Rodrigues, M.R., Luck, M.: Analysing partner selection through exchange values. In: Sichman, J.S., Antunes, L. (eds.) MABS 2005. LNCS (LNAI), vol. 3891, pp. 24–40. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994)MATHCrossRefGoogle Scholar
  12. 12.
    Moore, R.E.: Methods and Applic. of Interval Analysis. SIAM, Philadelphia (1979)Google Scholar
  13. 13.
    Carbonell, J.G.: Towards a process model of human personality traits. Artificial Intelligence 15, 49–74 (1980)CrossRefGoogle Scholar
  14. 14.
    Castelfranchi, C., Rosis, F., Falcone, R., Pizzutilo, S.: A testbed for investigating personality-based multiagent cooperation. In: Proc. of the Symp. on Logical Approaches to Agent Modeling and Design, Aix-en-Provence (1997)Google Scholar
  15. 15.
    Castelfranchi, C., Rosis, F., Falcone, R., Pizzutilo, S.: Personality traits and social attitudes in multiagent cooperation. Applied Artif. Intelligence 12, 649–675 (1998)CrossRefGoogle Scholar
  16. 16.
    Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. of the IEEE 77, 257–286 (1989)CrossRefGoogle Scholar
  17. 17.
    Boutilier, C.: Multiagent systems: challenges and oportunities for decision theoretic planning. Artificial Intelligence Magazine 20, 35–43 (1999)Google Scholar
  18. 18.
    Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101, 99–134 (1998)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In: Proc. 18th Intl. Joint Conf. on Artificial Intelligence, IJCAI 2003, Acapulco, pp. 705–711 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • G. P. Dimuro
    • 1
  • A. C. R. Costa
    • 1
  • L. V. Gonçalves
    • 1
  • A. Hübner
    • 1
  1. 1.Escola de Informática, PPGINFUniversidade Católica de PelotasPelotasBrazil

Personalised recommendations