Distance Transforms on Anisotropic Surfaces for Surface Roughness Measurement

  • Leena Ikonen
  • Toni Kuparinen
  • Eduardo Villanueva
  • Pekka Toivanen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4245)


The Distance Transform on Curved Space (DTOCS) calculates distances along a gray-level height map surface. In this article, the DTOCS is generalized for surfaces represented as real altitude data in an anisotropic grid. The distance transform combined with a nearest neighbor transform produces a roughness map showing the average roughness of image regions in addition to one roughness value for the whole surface. The method has been tested on profilometer data measured on samples of different paper grades. The correlation between the new method and the arithmetic mean deviation of the roughness surface, S a , for small wavelengths was strong for all tested paper sample sets, indicating that the DTOCS measures small scale surface roughness.


Roughness Surface Waviness Surface Anisotropic Surface Paper Surface True Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wagberg, P., Johansson, P.A.: Surface profilometry - a comp. between optical and mechanical sensing on printing papers. Tappi Journal 76(12), 15–121 (1993)Google Scholar
  2. 2.
    Toivanen, P.: New geodesic distance transforms for gray-scale images. Pattern Recognition Letters 17, 437–450 (1996)CrossRefGoogle Scholar
  3. 3.
    Johansson, J.-O.: Measuring homogenity of planar point-patterns by using kurtosis. Pattern Recognition Letters 21(13-14), 1149–1156 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    Stout, K.J. (ed.): Development of Methods for the Characterization of Roughness in Three Dimensions. Penton Press, revised reprint (original 1993) edition (2000)Google Scholar
  5. 5.
    Yuan, C., Peng, Z., Yan, X.: Surface characterization using wavelet theory and confocal laser scanning microscopy. Journal of Tribology 127(2), 394–404 (2005)CrossRefGoogle Scholar
  6. 6.
    Kent, H.J.: The fractal dimension of paper surface topography. In: TAPPI/CPPA International Printing and Graphics Arts Conference, Vancouver, Canada, pp. 73–78 (1990)Google Scholar
  7. 7.
    Kuparinen, T., Rodionov, O., Toivanen, P., Mielikainen, J., Bochko, V., Korkalainen, A., Parviainen, J., Vartiainen, E.: Fractal dimension analysis and statistical processing of paper surface images towards surface roughness measurement. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 1218–1227. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Ikonen, L., Toivanen, P.: Shortest routes on varying height surfaces using gray-level distance transforms. Image and Vision Computing 23(2), 133–141 (2005)CrossRefGoogle Scholar
  9. 9.
    Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)CrossRefGoogle Scholar
  10. 10.
    Ikonen, L.: Distance Transforms on Gray-Level Surfaces. PhD thesis, Lappeenranta University of Technology (2006)Google Scholar
  11. 11.
    Ikonen, L., Toivanen, P.: Distance and nearest neighbor transforms of gray-level surfaces. Pattern Recognition Letters (submitted) (September 2005)Google Scholar
  12. 12.
    Sintorn, I.-M., Borgefors, G.: Weighted distance transforms in rectangular grids. In: International Conference on Image Analysis and Processing (ICIAP), Palermo, Italy, pp. 322–326 (2001)Google Scholar
  13. 13.
    Sintorn, I.-M., Borgefors, G.: Weighted distance transforms for images using elongated voxel grids. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 244–254. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Ikonen, L.: Pixel queue algorithm for geodesic distance transforms. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 228–239. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  16. 16.
    Ikonen, L., Toivanen, P.: Distance and nearest neighbor transforms of gray-level surfaces using priority pixel queue algorithm. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 308–315. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Kapoutsis, C.A., Vavoulidis, C.P., Pitas, I.: Morphological iterative closest point algorithm. IEEE Transactions on Image Processing 8(11), 1644–1646 (1999)CrossRefGoogle Scholar
  18. 18.
    Niskanen, K. (ed.): Paper Physics. Book 16 - Papermaking Science and Technology. Fabet Oy and Tappi Press, Jyväskylä (1998)Google Scholar
  19. 19.
    National Institute of Standards and Technology. Internet-based surface metrology algorithm testing system. WWW-page (accessed 2006-03-31), available from: http://ats.nist.gov/VSC/jsp/index.jsp
  20. 20.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leena Ikonen
    • 1
  • Toni Kuparinen
    • 1
  • Eduardo Villanueva
    • 1
  • Pekka Toivanen
    • 2
  1. 1.Laboratory of Information Processing, Department of Information TechnologyLappeenranta University of TechnologyLappeenrantaFinland
  2. 2.Tampere University of Technology / Digital Media Institute / EPANET, FRAMISeinäjokiFinland

Personalised recommendations