Automated Abstraction Methodology for Genetic Regulatory Networks

  • Hiroyuki Kuwahara
  • Chris J. Myers
  • Michael S. Samoilov
  • Nathan A. Barker
  • Adam P. Arkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4220)


In order to efficiently analyze the complicated regulatory systems often encountered in biological settings, abstraction is essential. This paper presents an automated abstraction methodology that systematically reduces the small-scale complexity found in genetic regulatory network models, while broadly preserving the large-scale system behavior. Our method first reduces the number of reactions by using rapid equilibrium and quasi-steady-state approximations as well as a number of other stoichiometry-simplifying techniques, which together result in substantially shortened simulation time. To further reduce analysis time, our method can represent the molecular state of the system by a set of scaled Boolean (or n-ary) discrete levels. This results in a chemical master equation that is approximated by a Markov chain with a much smaller state space providing significant analysis time acceleration and computability gains. The genetic regulatory network for the phage λ lysis/lysogeny decision switch is used as an example throughout the paper to help illustrate the practical applications of our methodology.


Boolean Variable Rapid Equilibrium System Biology Markup Language Genetic Regulatory Network Chemical Master Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jong, H.D.: Modeling and simulation of genetic regulatory systems: A literature review. J. Comp. Biol. 9(1), 67–103 (2002)CrossRefGoogle Scholar
  2. 2.
    Baldi, P., Hatfield, G.W.: DNA Microarrays and Gene Expression. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  3. 3.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells. Genetics 149, 1633–1648 (1998)Google Scholar
  4. 4.
    Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)CrossRefGoogle Scholar
  5. 5.
    Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intracellular noise. Nature 420, 231–238 (2002)CrossRefGoogle Scholar
  6. 6.
    Samoilov, M., Plyasunov, S., Arkin, A.P.: Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proceedings of the National Academy of Sciences US 102(7), 2310–2315 (2005)CrossRefGoogle Scholar
  7. 7.
    Raser, J.M., O’Shea, E.K.: Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)CrossRefGoogle Scholar
  8. 8.
    Kierzek, A.M., Zaim, J., Zielenkiewicz, P.: The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J. Biol. Chem 276, 8165 (2001)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)CrossRefGoogle Scholar
  10. 10.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology 28 (2004)Google Scholar
  12. 12.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)Google Scholar
  13. 13.
    Gibson, M., Bruck, J.: An efficient algorithm for generating trajectories of stochastic gene regulation reactions. Technical report, California Institute of Technology (1998)Google Scholar
  14. 14.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics 115(4), 1716–1733 (2001)CrossRefGoogle Scholar
  15. 15.
    Rathinam, M., Cao, Y., Petzold, L., Gillespie, D.: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. Journal of Chemical Physics 119, 12784–12794 (2003)CrossRefGoogle Scholar
  16. 16.
    Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochastic simulation. Journal of Chemical Physics 119 (2003)Google Scholar
  17. 17.
    Cao, Y., Gillespie, D., Petzold, L.: Avoiding negative populations in explicit tau leaping. Journal of Chemical Physics 123 (2005)Google Scholar
  18. 18.
    Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the gillespie algorithm. J. Phys. Chem. 118(11) (2003)Google Scholar
  19. 19.
    Schnell, S., Maini, P.K.: A century of enzyme kinetics: Reliability of the k m and v max estimates. Comments on Theoretical Biology 8, 169–187 (2003)CrossRefGoogle Scholar
  20. 20.
    Myers, C.J., Belluomini, W., Killpack, K., Mercer, E., Peskin, E., Zheng, H.: Timed circuits: A new paradigm for high-speed design, pp. 335–340 (2001)Google Scholar
  21. 21.
    Berry, R.S., Rice, S.A., Ross, J.: Physical Chemistry, 2nd edn. Oxford University Press, New York (2000)Google Scholar
  22. 22.
    Systems Biology Workbench Development Group,
  23. 23.
  24. 24.
    Schnell, S., Mendoza, C.: Enzyme kinetics of multiple alternative substrates. Journal of Mathematical Chemistry 27, 155–170 (2000)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ackers, G.K., Johnson, A.D., Shea, M.A.: Quantitative model for gene regulation by λ phage repressor. Proc. Natl. Acad. Sci. USA 79, 1129–1133 (1982)CrossRefGoogle Scholar
  26. 26.
    Santillán, M., Mackey, M.C.: Why the lysogenic state of phase λ is stable: A mathematical modeling approch. Biophysical Jounal 86 (2004)Google Scholar
  27. 27.
    Dacol, D.K., Rabitz, H.: Sensitivity analysis of stochastic kinetic models. J. Math. Phys. 25 (1984)Google Scholar
  28. 28.
    Gunawan, R., Cao, Y., Petzold, L., Doyle, F.J.: Sensitivity analysis of discrete stochastic systems. Biophysical Journal 88, 2530–2540 (2005)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Kourilsky, P.: Lysogenization by bacteriophage lambda: I. multiple infection and the lysogenic response. Mol. Gen. Genet. 122, 183–195 (1973)CrossRefGoogle Scholar
  31. 31.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  32. 32.
    Gillespie, D.T.: Markov Processes An Introduction for Physical Scientists. Academic Press, London (1992)MATHGoogle Scholar
  33. 33.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hiroyuki Kuwahara
    • 1
  • Chris J. Myers
    • 1
  • Michael S. Samoilov
    • 2
  • Nathan A. Barker
    • 1
  • Adam P. Arkin
    • 2
  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Lawrence Berkeley National LaboratoryHoward Hughes Medical Institute, University of CaliforniaBerkeleyUSA

Personalised recommendations