Advertisement

A Point-Based Approach to PDE-Based Surface Reconstruction

  • Christian Linz
  • Bastian Goldlücke
  • Marcus Magnor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

Variational techniques are a popular approach for reconstructing the surface of an object. In previous work, the surface is represented either implicitly by the use of level sets or explicitly as a triangle mesh. In this paper we describe new formulations and develop fast algorithms for surface reconstruction based on partial differential equations (PDEs) derived from variational calculus using an explicit, purely point-based surface representation. The method is based on a Moving Least-Squares surface approximation of the sample points. Our new approach automatically copes with complicated topology and deformations, without the need for explicit treatment. In contrast to level sets, it requires no postprocessing, easily adapts to varying spatial resolutions and is invariant under rigid body motion. We demonstrate the versatility of our method using several synthetic data sets and show how our technique can be used to reconstruct object surfaces from real-world multi-view footage.

Keywords

Point Cloud Surface Reconstruction Topology Change Rigid Body Motion Triangle Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9(1), 3–15 (2003)CrossRefGoogle Scholar
  2. 2.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proc. SIGGRAPH 1998, pp. 415–421. ACM Press, New York (1998)CrossRefGoogle Scholar
  3. 3.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. ICCV, pp. 694–699 (1995)Google Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 394–398 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Duan, Y., Yang, L., Qin, H., Samaras, D.: Shape Reconstruction from 3D and 2D Data Using PDE-Based Deformable Surfaces. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 238–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Faugeras, O., Keriven, R.: Variational principles, surface evolution, PDE’s, level set methods and the stereo problem. IEEE Transactions on Image Processing 3, 336–344 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Goldlücke, B., Magnor, M.: Spacetime-continuous Geometry Meshes from Multiple-View Video Sequences. In: Proc. IEEE International Conference on Image Processing (ICIP 2005), Genoa, Italy (accepted, 2005)Google Scholar
  8. 8.
    Goldluecke, B., Magnor, M.: Space-time isosurface evolution for temporally coherent 3D reconstruction. In: Proc. CVPR, Washington, DC, USA, vol. 1, pp. 350–355 (July 2004)Google Scholar
  9. 9.
    Goldlücke, B., Magnor, M.: Weighted Minimal Hypersurfaces and Their Applications in Computer Vision. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 366–378. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Guennebaud, G., Barthe, L., Paulin, M.: Real-Time Point Cloud Refinement. In: Symposium on Point-Based Graphics, pp. 41–49 (2004)Google Scholar
  11. 11.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proc. SIGGRAPH 1992, pp. 71–78. ACM Press, New York (1992)CrossRefGoogle Scholar
  12. 12.
    Klein, J., Zachmann, G.: Point Cloud Surfaces using Geometric Proximity Graphs. Computers & Graphics 28(6), 839–850 (2004)CrossRefGoogle Scholar
  13. 13.
    Levin, D.: The approximation power of moving least-squares. Math. Comput. 67(224), 1517–1531 (1998)MATHCrossRefGoogle Scholar
  14. 14.
    Levin, D.: Mesh-independent surface interpolation. In: Geometric Modeling for Scientific Visualization, pp. 37–49. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proc. SIGGRAPH 1987, pp. 163–169. ACM Press, New York (1987)CrossRefGoogle Scholar
  16. 16.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)CrossRefGoogle Scholar
  17. 17.
    Pauly, M., Gross, M., Kobbelt, L.: Efficient Simplification of Point-Sampled Surfaces. In: VIS 2002: Proceedings of the Conference on Visualization, pp. 163–170. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  18. 18.
    Pauly, M., Kobbelt, L., Gross, M.: Multiresolution Modeling of Point-Sampled Geometry. Technical Report 378, Computer Science Department, ETH Zurich, Switzerland, Computer Science Department RWTH Aachen, Germany (September 2002)Google Scholar
  19. 19.
    Savadijev, P., Ferrie, F.P., Siddiqi, K.: Surface Recovery from 3D Point Data Using a Combined Parametric and Geometric Flow Approach. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 325–340. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Turk, G.: Re-tiling polygonal surfaces. In: Proc. SIGGRAPH 1992, pp. 55–64. ACM Press, New York (1992)CrossRefGoogle Scholar
  21. 21.
    Weyrich, T., Pauly, M., Heinzle, S., Keiser, R., Scandella, S., Gross, M.: Post-processing of Scanned 3D Surface Data. In: Symposium on Point-Based Graphics, pp. 85–94 (2004)Google Scholar
  22. 22.
    Hong-Kai, Z., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: VLSM 2001: Proceedings of the IEEE Workshop on Variational and Level Set Methods, Washington, DC, USA, p. 194. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Linz
    • 1
  • Bastian Goldlücke
    • 2
  • Marcus Magnor
    • 1
  1. 1.Institut für Computergraphik, TU BraunschweigBraunschweigGermany
  2. 2.Graphics – Optics – Vision Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations