Skip to main content

Surface Recovery from 3D Point Data Using a Combined Parametric and Geometric Flow Approach

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2003)

Abstract

This paper presents a novel method for surface recovery from discrete 3D point data sets. In order to produce improved reconstruction results, the algorithm presented in this paper combines the advantages of a parametric approach to model local surface structure, with the generality and the topological adaptability of a geometric flow approach. This hybrid method is specifically designed to preserve discontinuities in 3D, to be robust to noise, and to reconstruct objects with arbitrary topologies. The key ideas are to tailor a curvature consistency algorithm to the case of a set of points in 3D and to then incorporate a flux maximizing geometric flow for surface reconstruction. The approach is illustrated with experimental results on a variety of data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proc. SIGGRAPH 1998, pp. 415–421 (1998)

    Google Scholar 

  2. Bajaj, C., Bernardini, F., Xu, G.: Automatic reconstruction of surfaces and scalar fields from 3d scans. In: Proc. SIGGRAPH 1995, pp. 193–198 (1995)

    Google Scholar 

  3. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  4. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. In: Int. Conf. on Computer Vision (ICCV1995), pp. 694–699 (1995)

    Google Scholar 

  6. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proc. SIGGRAPH 1996, pp. 303–312 (1996)

    Google Scholar 

  7. Dinh, H.Q., Turk, G., Slabaugh, G.: Reconstructing Surfaces Using Anisotropic Basis Functions. In: ICCV-WS 1999, pp. 606–613 (2001)

    Google Scholar 

  8. Edelsbrunner, H., Mücke, E.P.: Three dimensional α shapes. ACM Trans. Graphics 13, 43–72 (1994)

    Article  MATH  Google Scholar 

  9. Ferrie, F.P., Lagarde, J., Whaite, P.: Darboux frames, snakes, and superquadrics: Geometry from the bottom up. IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 771–784 (1993)

    Article  Google Scholar 

  10. Fua, P., Sander, P.: Reconstructing surfaces from unstructured 3d points. In: Proc. Image Understanding Workshop, pp. 615–625 (1992)

    Google Scholar 

  11. Gomes, J., Mojsilovic, A.: A variational approach to recovering a manifold from sample points. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 3–17. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Guy, G., Medioni, G.: Inference of Surfaces, 3D Curves, and Junctions from Sparse, Noisy, 3-D Data. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 1265–1277 (1997)

    Article  Google Scholar 

  13. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH 1992, pp. 71–78 (1992)

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. International Journal of Computer Vision 1, 321–331 (1988)

    Article  Google Scholar 

  15. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. Int. Conf. on Computer Vision (ICCV 1995), pp. 810–815 (1995)

    Google Scholar 

  16. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence 17, 158–175 (1995)

    Article  Google Scholar 

  17. Mathur, S., Ferrie, F.P.: Edge Localisation in Surface Reconstruction Using Optimal Estimation Theory. In: Pelillo, M., Hancock, E.R. (eds.) EMMCVPR 1997. LNCS, vol. 1223, pp. 833–838. Springer, Heidelberg (1997)

    Google Scholar 

  18. McInerney, T., Terzopoulos, D.: A finite element model for 3D shape reconstruction and nonrigid motion tracking. In: Proc. Int. Conf. on Computer Vision (ICCV 1993), pp. 518–523 (1993)

    Google Scholar 

  19. Medioni, G., Lee, M.S., Tang, C.K.: A Computational Framework for Segmentation and Grouping. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  20. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sander, P., Zucker, S.W.: Inferring differential structure from 3-D images. IEEE Trans. on Pattern Analysis and Machine Intelligence 12, 833–854 (1990)

    Article  Google Scholar 

  22. Savadjiev, P.: Surface recovery from three-dimensional point data. Master’s thesis, Dept. of Electrical Engineering, McGill University (2003)

    Google Scholar 

  23. Siddiqi, K., Bérubé-Lauzière, Y., Tannenbaum, A., Zucker, S.W.: Area and length minimizing flows for shape segmentation. IEEE Trans. on Image Processing 7, 433–443 (1998)

    Article  Google Scholar 

  24. Solina, F., Bajcsy, R.: Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations. IEEE Trans. on Pattern Analysis and Machine Intelligence 12, 131–147 (1990)

    Article  Google Scholar 

  25. Terzopoulos, D.: Regularization of Inverse Visual Problems Involving Discontinuities. IEEE Trans. on Pattern Analysis and Machine Intelligence 8, 413–424 (1986)

    Article  Google Scholar 

  26. Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 703–714 (1991)

    Article  Google Scholar 

  27. Turk, G., O’Brien, J.F.: Modeling with Implicit Surfaces that Interpolate. ACM Trans. on Graphics 21(4), 855–873 (2002)

    Article  Google Scholar 

  28. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 1565–1578 (2002)

    Article  Google Scholar 

  29. Vemuri, B.C., Guo, Y.: Snake pedals: compact and versatile geometric models with physics-based control. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 445–459 (2000)

    Article  Google Scholar 

  30. Vemuri, B.C., Guo, Y., Wang, Z.: Deformable pedal curves and surfaces: hybrid geometric active models for shape recovery. International Journal of Computer Vision 44, 137–155 (2001)

    Article  MATH  Google Scholar 

  31. Whitaker, R.T.: A level-set approach to 3D reconstruction from range data. International Journal of Computer Vision 29, 203–231 (1998)

    Article  Google Scholar 

  32. Xu, C., Yezzi, A., Prince, J.L.: A summary of geometric level-set analogues for a general class of parametric active contour and surface models. In: Proc. IEEE Workshop on Variational and Level Set Methods, pp. 104–111 (2001)

    Google Scholar 

  33. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proc. IEEE Workshop on Variational and Level Set Methods, pp. 194–201 (2001)

    Google Scholar 

  34. Stanford University 3D scanning repository., http://graphics.stanford.edu/data/3Dscanrep/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Savadjiev, P., Ferrie, F.P., Siddiqi, K. (2003). Surface Recovery from 3D Point Data Using a Combined Parametric and Geometric Flow Approach. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics