Advertisement

A Map Ontology Driven Approach to Natural Language Traffic Information Processing and Services

  • Hongwei Qi
  • Yuguang Liu
  • Huifeng Liu
  • Xiaowei Liu
  • Yabo Wang
  • Toshikazu Fukushima
  • Yufei Zheng
  • Haitao Wang
  • Qiangze Feng
  • Han Lu
  • Shi Wang
  • Cungen Cao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4185)

Abstract

This paper proposes a map ontology driven approach to natural language traffic information processing, and also describes its evaluation results. Traffic congestion is considered a major urban problem whose solution has long been sought for by engineers and researchers. Recently, the idea of gathering traffic information from mobile users via short message service appears promising. However, the traffic information is difficult to process to achieve a high accuracy because of its direct, indirect and connotative expressions. The proposed map ontology consists of a set of concepts, attributes, relations and constraints on them. The map ontology plays two key roles: 1) a basis for natural language traffic information analysis, and 2) a basis for user query analysis. In this paper we present the major information processing modules and services for mobile users. Experimental results show that the proposed method can improve the traffic information processing accuracy to 93%–95%.

Keywords

Mobile User Short Message Service User Query Semantic Knowledge Traffic Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mamdoohi, A.R., Kermanshah, M.: Traffic Information Use Modeling in the Context of a Developing Country. Periodica Polytechnica Ser. Transp. Eng. 33(1-2), 125–137 (2005)Google Scholar
  2. 2.
    Chrobok, R., Hafstein, S.F., Pottmeier, A.: OLSIM: A New Generation of Traffic Information Systems. In: Macho, V., Kremer, K. (eds.) Forschung und wissenschaftliches Rechnen, GWDG-Bericht Nr. 63, pp. 11–25 (2004)Google Scholar
  3. 3.
    Nakata, T., Takeuchi, J.-i.: Mining Traffic Data from Probe-Car System for Travel Time Prediction. In: Proc. of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington, USA, pp. 817–822 (2004)Google Scholar
  4. 4.
    Peersman, G., et al.: A tutorial overview of the short message service within GSM. Computing and Control Engineering Journal, 79–89 (2000)Google Scholar
  5. 5.
    Evans, R., Gaizauskas, R., Cahill, L.J., Walker, J., Richardson, J., Dixon, A.: POETIC: A System for Gathering and Disseminating Traffic Information. Journal of Natural Language Engineering 1(4), 363–387 (1995)CrossRefGoogle Scholar
  6. 6.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specification. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Cao, C., Wang, H., Sui, Y.: Knowledge modeling and acquisition of traditional Chinese herbal drugs and formulae from text. Artificial Intelligence in Medicine 32, 3–13 (2004)CrossRefGoogle Scholar
  9. 9.
    Cao, C., Feng, Q., et al.: Progress in the Development of National Knowledge Infrastructure. Journal of Computer Science and Technology 17, 523–534 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Kulik, L., Duckham, M., Egenhofer, M.: Ontology DrivenMap Generalization. Journal of Visual Languages and Computing 16(3), 245–267 (2005)CrossRefGoogle Scholar
  11. 11.
    Fischer, M.M., Nijkamp, P.: Geographic Information Systems. In: Spatial Modeling and Policy Evaluation. Springer, Berlin (1993)Google Scholar
  12. 12.
    Understanding SuperMap GIS. SuperMap GIS Technologies, Inc., Beijing (2003), http://www.supermap.com.cn/downloadcenter/download.asp?cur_page=18
  13. 13.
    Johnson, I.: Understanding MapInfo: A Structured Guide. Published by the Archaeological Computing Laboratory, University of Sydney (1996), http://www.mapinfo.com/ ISBN 1864510161
  14. 14.
    ESRI, Understanding GIS–The ArcInfo Method. Cambridge, United Kingdom, UK: GeoInformation International (1997), http://www.arcinfo.com/
  15. 15.
    Molenaar, M.: An Introdcution to the Theory of Spatial Object Modelling. Taylor & Francis Ltd, London (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hongwei Qi
    • 1
  • Yuguang Liu
    • 1
  • Huifeng Liu
    • 1
  • Xiaowei Liu
    • 1
  • Yabo Wang
    • 1
  • Toshikazu Fukushima
    • 1
  • Yufei Zheng
    • 2
  • Haitao Wang
    • 2
  • Qiangze Feng
    • 2
  • Han Lu
    • 2
  • Shi Wang
    • 2
  • Cungen Cao
    • 2
  1. 1.NEC Laboratories, ChinaBeijingChina
  2. 2.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations