Skip to main content

Computational Design Approach to Hydrodynamic Focusing in a Flow Cytometer

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

  • 1431 Accesses

Abstract

A two-fluid theoretical model was developed to simulate the hydrodynamic focusing process formed by the coflowing sample and sheath fluids in a flow cytometer. The analysis consists of two groups of time-dependent three-dimensional conservation equations of mass and momentum. To validate the computer code, the predicted focused width in the two-dimensional test configuration was compared with Lee et al.’s measured data. The present study also examines the pressure distribution of the three-dimensional hydrodynamic focusing flowfield. For the u Sh /u S ratio ranging from 10 to 80, the focused width was determined to explore the applicability of the proposed flow cytometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ormerod, M.: Flow Cytometry: A Practical Approach, 3rd edn. Oxford University Press, Surrey (2000)

    Google Scholar 

  2. Shapiro, H.M.: Practical Flow Cytometry: Parameters and Probes, 3rd edn. Wiley-Liss, New York (1994)

    Google Scholar 

  3. Mandy, F.F., Bergeron, M., Minkus, T.: Principles of Flow Cytometry. Transfusion Science 16(4), 303–314 (1995)

    Google Scholar 

  4. Schrum, D., Culbertson, P.T., Jacobson, S.C., Ramsey, J.M.: Microchip Flow Cytometry Using Electrokinetic Focusing. Analytical Chemistry 71(19), 4173–4177 (1999)

    Article  Google Scholar 

  5. Miyake, R., Ohki, H., Yamazaki, I., Yabe, R.: A Development of Micro Sheath Flow Chamber. In: Proceedings of 4th IEEE MEMS, pp. 265–270 (1991)

    Google Scholar 

  6. Dietz, L.J., Dubrow, R.S., Manian, B.S., Sizto, N.L.: Volumetric Capillary Cytometry: A New Method for Absolute Cell Enumeration. Cytometry 23, 177–186 (1996)

    Article  Google Scholar 

  7. Van, O.A., Keller, R.A., Ambrose, W.P.: High Throughput Flow Cytometric DNA Fragment Sizing. Analytical Chemistry 72(1), 37–41 (2000)

    Article  Google Scholar 

  8. McClain, M.A., Culbertson, C.T., Jacobson, S.C., Ramsey, J.M.: Flow Cytometry of Escherichia coli on Microfluidic Devices. Analytical Chemistry 73(21), 5334–5338 (2001)

    Article  Google Scholar 

  9. Lee, G.B., Hwei, B.H., Huang, G.: Micromachined Pre-focused M×N Flow Switches Continuous Multi-sample Injection. Journal of Micromechanics and Microengineering 11, 1–8 (2001)

    Article  Google Scholar 

  10. Lee, G.B., Hung, C.I., Ke, B.J., Huang, G.R., Hwei, B.H., Lai, H.F.: Hydrodynamic Focusing for a Micromachined Flow Cytometer. Journal of Fluids Engineering 123, 672–679 (2001)

    Article  Google Scholar 

  11. Chung, S., Park, S.J., Kim, J.K., Chung, C., Han, D.C., Chang, J.K.: Plastic Microchip Flow Cytometer Based on 2- and 3-Dimensional Hydrodynamic Flow Focusing. Microsystem Technologies 9, 525–533 (2003)

    Article  Google Scholar 

  12. Drew, D.A., Lahey, R.T.: Phase Distribution Mechanisms in Two-phase Flow in a Circular Pipe. J. Fluid Mechanics 117, 91–106 (1982)

    Article  MATH  Google Scholar 

  13. Park, J.W., Drew, D.A., Lahey, R.T.: The Analysis of Void Wave Propagation in Adiabatic Mono-dispersed Bubbly Two-phase Flows Using an Ensemble-averaged Two-fluid Model. International Journal of Multiphase Flow 24, 1205–1244 (1998)

    Article  MATH  Google Scholar 

  14. Lahey, R.T., Drew, D.A.: The Analysis of Two-Phase Flow and Heat Transfer Using a Multidimensional, Four Field, Two-fluid Model. Nuclear Engineering and Design 204, 29–44 (2001)

    Article  Google Scholar 

  15. Ishii, M., Mishima, K.: Two-fluid Model Hydrodynamic Constitutive Relation. Nuclear Engineering and Design 82, 107–126 (1984)

    Article  Google Scholar 

  16. Ishii, M., Zuber, N.: Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows. AIChE Journal 25, 843–855 (1979)

    Article  Google Scholar 

  17. Lahey, R.T.: The Analysis of Phase Separation and Phase Distribution Phenomena Using Two-fluid models. Nuclear Engineering and Design 122, 17–40 (1990)

    Article  Google Scholar 

  18. Van, D.J.P., Raithby, G.D.: Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer 7, 147–163 (1984)

    MATH  Google Scholar 

  19. Jang, D.S., Jetli, R., Acharya, S.: Comparison of the PISO, SIMPLER, and SIMPLEC Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems. Numerical Heat Transfer 10, 209–228 (1986)

    Article  MATH  Google Scholar 

  20. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing, Washington (1980)

    MATH  Google Scholar 

  21. Mazumdar, J.N.: Biofluid Mechanics. World Scientific Publishing, Singapore (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, AS., Wu, CY. (2006). Computational Design Approach to Hydrodynamic Focusing in a Flow Cytometer. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_37

Download citation

  • DOI: https://doi.org/10.1007/11816102_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics