Advertisement

Matrix Based Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches

  • Gang Chen
  • Fuhua (Frank) Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)

Abstract

A new subdivision depth computation technique for extra-ordinary Catmull-Clark subdivision surface (CCSS) patches is presented. The new technique improves a previous technique by using a matrix representation of the second order norm in the computation process. This enables us to get a more precise estimate of the rate of convergence of the second order norm of an extra-ordinary CCSS patch and, consequently, a more precise subdivision depth for a given error tolerance.

Keywords

Convergence Rate Control Point Error Tolerance Surface Patch Recurrence Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catmull, E., Clark, J.: Recursively Generated B-spline Surfaces on Arbitrary Topological Meshes. Computer-Aided Design 10 6, 350–355 (1978)CrossRefGoogle Scholar
  2. 2.
    Chen, G., Cheng, F.: Matrix based Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches (complete version), http://www.cs.uky.edu/~cheng/PUBL/sub_depth_3.pdf
  3. 3.
    Cheng, F., Yong, J.: Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces. Computer Aided Design & Applications 3, 1–4 (2006)Google Scholar
  4. 4.
    Cheng, F., Chen, G., Yong, J.: Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches. LNCS. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Halstead, M., Kass, M., DeRose, T.: Efficient, Fair Interpolation Using Catmull-Clark Surfaces. In: Proceedings of SIGGRAPH 1993, pp. 35–44 (1993)Google Scholar
  6. 6.
    Lutterkort, D., Peters, J.: Tight linear envelopes for splines. Numerische Mathematik 89(4), 735–748 (2001)MATHMathSciNetGoogle Scholar
  7. 7.
    Stam, J.: Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values. In: Proceedings of SIGGRAPH 1998, pp. 395–404 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gang Chen
    • 1
  • Fuhua (Frank) Cheng
    • 1
  1. 1.Graphics & Geometric Modeling Lab, Department of Computer ScienceUniversity of KentuckyLexington

Personalised recommendations