Skip to main content

Density-Controlled Sampling of Parametric Surfaces Using Adaptive Space-Filling Curves

  • Conference paper
Geometric Modeling and Processing - GMP 2006 (GMP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4077))

Included in the following conference series:

Abstract

Low-discrepancy point distributions exhibit excellent uniformity properties for sampling in applications such as rendering and measurement. We present an algorithm for generating low-discrepancy point distributions on arbitrary parametric surfaces using the idea of converting the 2D sampling problem into a 1D problem by adaptively mapping a space-filling curve onto the surface. The 1D distribution takes into account the parametric mapping by employing a corrective approach similar to histogram equalisation to ensure that it gives a 2D low-discrepancy point distribution on the surface. This also allows for control over the local density of the distribution, e.g. to place points more densely in regions of higher curvature. To allow for parametric distortion, the space-filling curve is generated adaptively to cover the surface evenly. Experiments show that this approach efficiently generates low-discrepancy distributions on arbitrary parametric surfaces and creates nearly as good results as well-known low-discrepancy sampling methods designed for particular surfaces like planes and spheres. However, we also show that machine-precision limitations may require surface reparameterisation in addition to adaptive sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steigleder, M., McCool, M.: Generalized stratified sampling using the hilbert curve. Journal of Graphics Tools: JGT 8(3), 41–47 (2003)

    Google Scholar 

  2. Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Hwang, F.K., Du, D.Z. (eds.) Computing in Euclidean Geometry. World Scientific, Singapore (1992)

    Google Scholar 

  3. Keller, A.: Instant radiosity. In: SIGGRAPH, pp. 49–56 (1997)

    Google Scholar 

  4. Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graphics 5(1), 51–72 (1986)

    Article  Google Scholar 

  5. Rusinkiewicz, S., Levoy, M.: Qsplat: A multiresolution point rendering system for large meshes. In: Akeley, K. (ed.) Proc. ACM SIGGRAPH Comput. Graph, pp. 343–352 (2000)

    Google Scholar 

  6. Kobbelt, L., Botsch, M.: A survey of pointbased techniques in computer graphics. Computers and Graphics 28(6), 801–814 (2004)

    Article  Google Scholar 

  7. Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3D: An interactive system for point-based surface editing. In: Hughes, J. (ed.) Proc. ACM SIGGRAPH, pp. 322–329 (2002)

    Google Scholar 

  8. Zagajac, J.: A fast method for estimating discrete field values in early engineering design. In: Proc. 3rd ACM Symp. Solid Modeling and Applications, pp. 420–430 (1995)

    Google Scholar 

  9. Shapiro, V.A., Tsukanov, I.G.: Meshfree simulation of deforming domains. Computer-Aided Design 31(7), 459–471 (1999)

    Article  MATH  Google Scholar 

  10. Floater, M.S., Reimers, M.: Meshless parameterization and surface reconstruction. Computer Aided Geometric Design 18(2), 77–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dobkin, D.P., Eppstein, D.: Computing the discrepancy. In: Proc. 9th ACM Symp. Computational Geometry, pp. 47–52 (1993)

    Google Scholar 

  12. Zeremba, S.: The mathematical basis of monte carlo and quasi-monte carlo methods. SIAM Review 10(3), 303–314 (1968)

    Article  MathSciNet  Google Scholar 

  13. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Trans. Image Processing 5(5), 794–797 (1996)

    Article  Google Scholar 

  14. Niederreiter, H.: Random number generation and quasi-monte carlo methods. SIAM Review (1992)

    Google Scholar 

  15. Niederreiter, H.: Quasi-monte carlo methods and pseudo-random numbers. Bull. AMS 84, 957–1041 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Davies, T.J.G., Martin, R.R., Bowyer, A.: Computing volume properties using low-discrepancy sequences. In: Geometric Modelling, pp. 55–72 (1999)

    Google Scholar 

  17. Keller, A.: The fast calculation of form factors using low discrepancy sequences. In: Purgathofer, W. (ed.) 12th Spring Conference on Computer Graphics, Comenius University, Bratislava, Slovakia, pp. 195–204 (1996)

    Google Scholar 

  18. Bratley, P., Fox, B.L., Niederreiter, H.: Algorithm 738: Programs to generate niederreiter’s low-discrepancy sequences. j-TOMS 20(4), 494–495 (1994)

    Article  MATH  Google Scholar 

  19. Bratley, P., Fox, B.L.: Algorithm 659: Implementing sobol’s quasirandom sequence generator. j-TOMS 14(1), 88–100 (1988)

    Article  MATH  Google Scholar 

  20. Shirley, P.: Discrepancy as a quality measure for sample distributions. In: Eurographics 1991, pp. 183–194. Elsevier Science Publishers, Amsterdam (1991)

    Google Scholar 

  21. Halton, J.H.: A retrospective and prospective survey of the monte carlo method. SIAM Review 12, 1–63 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw 23(2), 266–294 (1997)

    Article  MATH  Google Scholar 

  23. Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with hammersley and halton points. J. Graph. Tools 2(2), 9–24 (1997)

    Google Scholar 

  24. Secord, A., Heidrich, W., Streit, L.: Fast primitive distribution for illustration. In: Rendering Techniques, pp. 215–226 (2002)

    Google Scholar 

  25. Li, X., Wang, W., Martin, R.R., Bowyer, A.: Using low-discrepancy sequences and the crofton formula to compute surface areas of geometric models. Computer-Aided Design 35(9), 771–782 (2003)

    Article  MATH  Google Scholar 

  26. Rovira, J., Wonka, P., Castro, F., Sbert, M.: Point sampling with uniformly distributed lines. In: Eurographics Symp. Point-Based Graphics, pp. 109–118 (2005)

    Google Scholar 

  27. Hartinger, J., Kainhofer, R.: Non-uniform low-discrepancy sequence generation and integration of singular integrands. In: Niederreiter, H., Talay, D. (eds.) Proc. MC2QMC 2004. Springer, Berlin (2005)

    Google Scholar 

  28. Hlawka, E., Mück, R.: A Transformation of Equidistributed Sequences, pp. 371–388. Academic Press, New York (1972)

    Google Scholar 

  29. Elber, G.: Free Form Surface Analysis using a Hybrid of Symbolic and Numeric Computation. PhD thesis, Dept. of Computer Science, University of Utah (1992)

    Google Scholar 

  30. Mandelbrot, B.: The fractal geometry of nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  31. Butz, A.: Alternative algorithm for hilbert’s space-filling curve. IEEE Trans. Computers Short Notes, 424–426 (1971)

    Article  Google Scholar 

  32. Lawder, J.: Calculation of mappings between one and n-dimensional values using the hilbert space-filling curve. Technical Report JL1/00 (2000)

    Google Scholar 

  33. Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Comput. 18(2), 595–609 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mitchell, D.R.: Generating antialiased images at low sampling densities. In: Stone, M.C. (ed.) SIGGRAPH 1987 Conference Proceedings Computer Graphics, Anaheim, CA, July 27-31, vol. 21(4), pp. 65–72 (1987)

    Google Scholar 

  35. Alexander, F.J., Garcia, A.L.: The direct simulation monte carlo method. Comput. Phys. 11(6), 588–593 (1997)

    Article  Google Scholar 

  36. Mech, R., Prusinkiewicz, P.: Generating subdivision curves with L-systems on a GPU. In: SIGGRAPH (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quinn, J.A., Langbein, F.C., Martin, R.R., Elber, G. (2006). Density-Controlled Sampling of Parametric Surfaces Using Adaptive Space-Filling Curves. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_33

Download citation

  • DOI: https://doi.org/10.1007/11802914_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36711-6

  • Online ISBN: 978-3-540-36865-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics