Density-Controlled Sampling of Parametric Surfaces Using Adaptive Space-Filling Curves

  • J. A. Quinn
  • F. C. Langbein
  • R. R. Martin
  • G. Elber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)


Low-discrepancy point distributions exhibit excellent uniformity properties for sampling in applications such as rendering and measurement. We present an algorithm for generating low-discrepancy point distributions on arbitrary parametric surfaces using the idea of converting the 2D sampling problem into a 1D problem by adaptively mapping a space-filling curve onto the surface. The 1D distribution takes into account the parametric mapping by employing a corrective approach similar to histogram equalisation to ensure that it gives a 2D low-discrepancy point distribution on the surface. This also allows for control over the local density of the distribution, e.g. to place points more densely in regions of higher curvature. To allow for parametric distortion, the space-filling curve is generated adaptively to cover the surface evenly. Experiments show that this approach efficiently generates low-discrepancy distributions on arbitrary parametric surfaces and creates nearly as good results as well-known low-discrepancy sampling methods designed for particular surfaces like planes and spheres. However, we also show that machine-precision limitations may require surface reparameterisation in addition to adaptive sampling.


Parametric Surface Histogram Equalisation Point Distribution Parameter Domain Parametric Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steigleder, M., McCool, M.: Generalized stratified sampling using the hilbert curve. Journal of Graphics Tools: JGT 8(3), 41–47 (2003)Google Scholar
  2. 2.
    Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Hwang, F.K., Du, D.Z. (eds.) Computing in Euclidean Geometry. World Scientific, Singapore (1992)Google Scholar
  3. 3.
    Keller, A.: Instant radiosity. In: SIGGRAPH, pp. 49–56 (1997)Google Scholar
  4. 4.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graphics 5(1), 51–72 (1986)CrossRefGoogle Scholar
  5. 5.
    Rusinkiewicz, S., Levoy, M.: Qsplat: A multiresolution point rendering system for large meshes. In: Akeley, K. (ed.) Proc. ACM SIGGRAPH Comput. Graph, pp. 343–352 (2000)Google Scholar
  6. 6.
    Kobbelt, L., Botsch, M.: A survey of pointbased techniques in computer graphics. Computers and Graphics 28(6), 801–814 (2004)CrossRefGoogle Scholar
  7. 7.
    Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3D: An interactive system for point-based surface editing. In: Hughes, J. (ed.) Proc. ACM SIGGRAPH, pp. 322–329 (2002)Google Scholar
  8. 8.
    Zagajac, J.: A fast method for estimating discrete field values in early engineering design. In: Proc. 3rd ACM Symp. Solid Modeling and Applications, pp. 420–430 (1995)Google Scholar
  9. 9.
    Shapiro, V.A., Tsukanov, I.G.: Meshfree simulation of deforming domains. Computer-Aided Design 31(7), 459–471 (1999)MATHCrossRefGoogle Scholar
  10. 10.
    Floater, M.S., Reimers, M.: Meshless parameterization and surface reconstruction. Computer Aided Geometric Design 18(2), 77–92 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dobkin, D.P., Eppstein, D.: Computing the discrepancy. In: Proc. 9th ACM Symp. Computational Geometry, pp. 47–52 (1993)Google Scholar
  12. 12.
    Zeremba, S.: The mathematical basis of monte carlo and quasi-monte carlo methods. SIAM Review 10(3), 303–314 (1968)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Trans. Image Processing 5(5), 794–797 (1996)CrossRefGoogle Scholar
  14. 14.
    Niederreiter, H.: Random number generation and quasi-monte carlo methods. SIAM Review (1992)Google Scholar
  15. 15.
    Niederreiter, H.: Quasi-monte carlo methods and pseudo-random numbers. Bull. AMS 84, 957–1041 (1978)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Davies, T.J.G., Martin, R.R., Bowyer, A.: Computing volume properties using low-discrepancy sequences. In: Geometric Modelling, pp. 55–72 (1999)Google Scholar
  17. 17.
    Keller, A.: The fast calculation of form factors using low discrepancy sequences. In: Purgathofer, W. (ed.) 12th Spring Conference on Computer Graphics, Comenius University, Bratislava, Slovakia, pp. 195–204 (1996)Google Scholar
  18. 18.
    Bratley, P., Fox, B.L., Niederreiter, H.: Algorithm 738: Programs to generate niederreiter’s low-discrepancy sequences. j-TOMS 20(4), 494–495 (1994)MATHCrossRefGoogle Scholar
  19. 19.
    Bratley, P., Fox, B.L.: Algorithm 659: Implementing sobol’s quasirandom sequence generator. j-TOMS 14(1), 88–100 (1988)MATHCrossRefGoogle Scholar
  20. 20.
    Shirley, P.: Discrepancy as a quality measure for sample distributions. In: Eurographics 1991, pp. 183–194. Elsevier Science Publishers, Amsterdam (1991)Google Scholar
  21. 21.
    Halton, J.H.: A retrospective and prospective survey of the monte carlo method. SIAM Review 12, 1–63 (1970)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw 23(2), 266–294 (1997)MATHCrossRefGoogle Scholar
  23. 23.
    Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with hammersley and halton points. J. Graph. Tools 2(2), 9–24 (1997)Google Scholar
  24. 24.
    Secord, A., Heidrich, W., Streit, L.: Fast primitive distribution for illustration. In: Rendering Techniques, pp. 215–226 (2002)Google Scholar
  25. 25.
    Li, X., Wang, W., Martin, R.R., Bowyer, A.: Using low-discrepancy sequences and the crofton formula to compute surface areas of geometric models. Computer-Aided Design 35(9), 771–782 (2003)CrossRefMATHGoogle Scholar
  26. 26.
    Rovira, J., Wonka, P., Castro, F., Sbert, M.: Point sampling with uniformly distributed lines. In: Eurographics Symp. Point-Based Graphics, pp. 109–118 (2005)Google Scholar
  27. 27.
    Hartinger, J., Kainhofer, R.: Non-uniform low-discrepancy sequence generation and integration of singular integrands. In: Niederreiter, H., Talay, D. (eds.) Proc. MC2QMC 2004. Springer, Berlin (2005)Google Scholar
  28. 28.
    Hlawka, E., Mück, R.: A Transformation of Equidistributed Sequences, pp. 371–388. Academic Press, New York (1972)Google Scholar
  29. 29.
    Elber, G.: Free Form Surface Analysis using a Hybrid of Symbolic and Numeric Computation. PhD thesis, Dept. of Computer Science, University of Utah (1992)Google Scholar
  30. 30.
    Mandelbrot, B.: The fractal geometry of nature. Freeman, San Francisco (1982)MATHGoogle Scholar
  31. 31.
    Butz, A.: Alternative algorithm for hilbert’s space-filling curve. IEEE Trans. Computers Short Notes, 424–426 (1971)CrossRefGoogle Scholar
  32. 32.
    Lawder, J.: Calculation of mappings between one and n-dimensional values using the hilbert space-filling curve. Technical Report JL1/00 (2000)Google Scholar
  33. 33.
    Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Comput. 18(2), 595–609 (1997)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Mitchell, D.R.: Generating antialiased images at low sampling densities. In: Stone, M.C. (ed.) SIGGRAPH 1987 Conference Proceedings Computer Graphics, Anaheim, CA, July 27-31, vol. 21(4), pp. 65–72 (1987)Google Scholar
  35. 35.
    Alexander, F.J., Garcia, A.L.: The direct simulation monte carlo method. Comput. Phys. 11(6), 588–593 (1997)CrossRefGoogle Scholar
  36. 36.
    Mech, R., Prusinkiewicz, P.: Generating subdivision curves with L-systems on a GPU. In: SIGGRAPH (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. A. Quinn
    • 1
  • F. C. Langbein
    • 1
  • R. R. Martin
    • 1
  • G. Elber
    • 2
  1. 1.Cardiff UniversityUK
  2. 2.TechnionIsrael

Personalised recommendations