An Adaptively Secure Mix-Net Without Erasures

  • Douglas Wikström
  • Jens Groth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4052)


We construct the first mix-net that is secure against adaptive adversaries corrupting any minority of the mix-servers and any set of senders. The mix-net is based on the Paillier cryptosystem and analyzed in the universal composability model without erasures under the decisional composite residuosity assumption, the strong RSA-assumption, and the discrete logarithm assumption. We assume the existence of ideal functionalities for a bulletin board, key generation, and coin-flipping.


Homomorphic Encryption Cryptology ePrint Archive Private Input Semantic Security Joint Decryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, M., Imai, H.: Flaws in some robust optimistic mix-nets. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 39–50. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  3. 3.
    Chaum, D.: Untraceable electronic mail, return addresses and digital pseudo-nyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  4. 4.
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–267. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Transactions 88-A(1), 172–188 (2005)Google Scholar
  8. 8.
    Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer Verlag, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: From cryptosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 331–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attack. In: 22th ACM Symposium on the Theory of Computing (STOC), pp. 427–437 (1990)Google Scholar
  12. 12.
    Neff, A.: A verifiable secret shuffle and its application to e-voting. In: 8th ACM Conference on Computer and Communications Security (CCS), pp. 116–125. ACM Press, New York (2001)CrossRefGoogle Scholar
  13. 13.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer Verlag, Heidelberg (1999)Google Scholar
  14. 14.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 315–335. Springer Verlag, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer Verlag, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Douglas Wikström
    • 1
  • Jens Groth
    • 2
  1. 1.Department of Computer ScienceETH Zürich 
  2. 2.UCLA, Computer Science Department 

Personalised recommendations