Skip to main content

Logspace Complexity of Functions and Structures

  • Conference paper
Logical Approaches to Computational Barriers (CiE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3988))

Included in the following conference series:

  • 952 Accesses

Abstract

Logspace complexity of functions and structures is based on the notion of a Turing machine with input and output as in Papadmitriou [16]. For any k > 1, we construct a logspace isomorphism between {0,1}* and {0,1,..., k}*. We improve results of Cenzer and Remmel [5] by characterizing the sets which are logspace isomorphic to {1}*. We generalize Proposition 8.2 of [16] by giving upper bounds on the space complexity of compositions and use this to obtain the complexity of isomorphic copies of structures with different universes. Finally, we construct logspace models with standard universe {0,1}* of various additive groups, including Z(p  ∞ ) and the rationals.

Research was partially supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., Kayhal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160, 781–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beame, P.W., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related problems. SIAM J. Computing 15, 994–1003 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvert, W., Cenzer, D., Harizanov, V., Morozov, A.: \(\Delta^0_2\) categoricity of equivalence structures. Ann. Pure Appl. Logic (to appear)

    Google Scholar 

  4. Cenzer, D., Remmel, J.B.: Polynomial-time versus recursive models. Ann. Pure Appl. Logic 54, 17–58 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cenzer, D., Remmel, J.B.: Polynomial-time Abelian groups. Ann. Pure Appl. Logic 56, 313–363 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cenzer, D., Remmel, J.B.: Feasibly categorical Abelian groups. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II. Prog. in Comp. Science and Appl. Logic, vol. 13, pp. 91–154. Birkhäuser, Basel (1995)

    Chapter  Google Scholar 

  7. Cenzer, D., Remmel, J.B.: Feasibly categorical models. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 300–312. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Cenzer, D., Remmel, J.B.: Complexity and categoricity. Information and Computation 140, 2–25 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cenzer, D., Remmel, J.B.: Complexity-theoretic model theory and algebra. In: Ershov, Y., Goncharov, S.S., Nerode, A., Remmel, J.B. (eds.) Handbook of Recursive Mathematics. Elsevier Studies in Logic and Found. Math., vol. I, 138, pp. 381–513 (1998)

    Google Scholar 

  10. Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform NC 1. Theor. Inform. Appl. 35, 259–275 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  12. The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley, London, UK (1998)

    Google Scholar 

  13. Nerode, A., Remmel, J.B.: Complexity-theoretic algebra II: Boolean algebras. Ann. Pure Appl. Logic 44, 71–79 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nerode, A., Remmel, J.B.: Polynomial time equivalence types. In: Sieg, W. (ed.) Logic and Computation. Contemp. Math., vol. 106, pp. 221–249 (1990)

    Google Scholar 

  15. Nerode, A., Remmel, J.B.: Polynomially isolated sets. In: Ambos-Spies, K., Muller, G.H., Sacks, G.E. (eds.) Recursion Theory Week (Oberwolfach 1989). Lecture Notes in Math., vol. 1432, pp. 323–362. Springer, Heidelberg (1990)

    Google Scholar 

  16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  17. Smith, R.: Two theorems on autostability in p-groups, Logic Year 1979-80 (Storrs, CT). Lecture Notes in Math., vol. 859, pp. 302–311. Springer, Berlin (1981)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cenzer, D., Uddin, Z. (2006). Logspace Complexity of Functions and Structures. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds) Logical Approaches to Computational Barriers. CiE 2006. Lecture Notes in Computer Science, vol 3988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780342_8

Download citation

  • DOI: https://doi.org/10.1007/11780342_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35466-6

  • Online ISBN: 978-3-540-35468-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics