Skip to main content

Nonlinear System Stabilisation by an Evolutionary Neural Network

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3972))

Included in the following conference series:

Abstract

This paper presents the application of an evolutionary neural network controller in a stabilisation problem involving an inverted pendulum. It is guaranteed that the resulting continuous closed-loop system is asymptotically stable. The process of training the neural network controller can be treated as a constrained optimisation problem where the equality constraint is derived from the Lyapunov stability criteria. The decision variables in this investigation are made up from the connection weights in the neural network, a positive definite matrix required for the Lyapunov function and a matrix for the stability constraint while the objective value is calculated from the closed-loop system performance. The optimisation technique chosen for the task is a variant of genetic algorithms called a cooperative coevolutionary genetic algorithm (CCGA). Two control strategies are explored: model-reference control and optimal control. In the model-reference control, the simulation results indicate that the tracking performance of the system stabilised by the evolutionary neural network is superior to that controlled by a neural network, which is trained via a neural network emulator. In addition, the system stabilised by the evolutionary neural network requires the energy in the level which is comparable to that found in the system that uses a linear quadratic regulator in optimal control. This confirms the usefulness of the CCGA in nonlinear system stabilisation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sadegh, N.: A Perceptron Network for Functional Identification and Control of Nonlinear Systems. IEEE Trans. Neural Networks 4(6), 982–988 (1993)

    Article  Google Scholar 

  2. Fierro, R., Lewis, F.L.: Control of a Nonholonomic Mobile Robot Using Neural Networks. IEEE Trans. Neural Networks 9(4), 589–600 (1998)

    Article  Google Scholar 

  3. Kim, Y.H., Lewis, F.L.: Neural Network Output Feedback Control of Robot Manipulators. IEEE Trans. Robot. Autom. 15(2), 301–309 (1999)

    Article  Google Scholar 

  4. Jagannathan, S.: Control of a Class of Nonlinear Discrete-Time Systems Using Multilayer Neural Networks. IEEE Trans. Neural Networks 12(5), 1113–1120 (2001)

    Article  MathSciNet  Google Scholar 

  5. Zhu, Q., Guo, L.: Stable Adaptive Neurocontrol for Nonlinear Discrete-Time Systems. IEEE Trans. Neural Networks 15(3), 653–662 (2004)

    Article  Google Scholar 

  6. He, S., Reif, K., Unbehauen, R.: A Neural Approach for Control of Nonlinear Systems with Feedback Linearization. IEEE Trans. Neural Networks 9(6), 1409–1421 (1998)

    Article  Google Scholar 

  7. Nam, K.: Stabilization of Feedback Linearizable Systems Using a Radial Basis Function Network. IEEE Trans. Automat. Contr. 44(5), 1026–1031 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kosmatopoulos, E.B.: Universal Stabilization Using Control Lyapunov Functions, Adaptive Derivative Feedback, and Neural Network Approximators. IEEE Trans. Syst. Man Cybern. B Cybern. 28(3), 472–477 (1998)

    Article  Google Scholar 

  9. Sanchez, E.N., Perez, J.P.: Input-to-State Stabilization of Dynamic Neural Networks. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 33(4), 532–536 (2003)

    Article  Google Scholar 

  10. Tanaka, K.: An Approach to Stability Criteria of Neural-Network Control Systems. IEEE Trans. Neural Networks 7(3), 629–642 (1996)

    Article  Google Scholar 

  11. Suykens, J.A.K., Vandewalle, J., De Moor, B.: Lur’e Systems with Multilayer Perceptron and Recurrent Neural Networks: Absolute Stability and Dissipativity. IEEE Trans. Automat. Contr. 44(4), 770–774 (1999)

    Article  MATH  Google Scholar 

  12. Kuntanapreeda, S., Fullmer, R.R.: A Training Rule which Guarantees Finite-Region Stability for a Class of Closed-Loop Neural-Network Control Systems. IEEE Trans. Neural Networks 7(3), 745–751 (1996)

    Article  Google Scholar 

  13. Ekachaiworasin, R., Kuntanapreeda, S.: A Training Rule which Guarantees Finite-Region Stability of Neural Network Closed-Loop Control: An Extension to Nonhermitian Systems. In: Amari, S.-I., Giles, C.L., Gori, M., Piuri, V. (eds.) Proceedings of the 2000 IEEE-INNS-ENNS International Joint Conference on Neural Networks, pp. 325–330. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  14. Yao, X.: Evolving Artificial Neural Networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  15. Potter, M.A., De Jong, K.A.: A Cooperative Coevolutionary Approach to Function Optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

    Google Scholar 

  16. De Jong, K.A., Potter, M.: Evolving Complex Structures via Cooperative Coevolution. In: McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 307–318. MIT Press, Cambridge (1995)

    Google Scholar 

  17. Potter, M.A., De Jong, K.A.: Evolving Neural Networks with Collaborative Species. In: Ören, T.I., Birta, L.G. (eds.) Proceedings of the 1995 Summer Computer Simulation Conference, pp. 340–345. Society for Computer Simulation, San Diego (1995)

    Google Scholar 

  18. Pimpawat, C., Chaiyaratana, N.: Three-Dimensional Container Loading Using a Cooperative Co-evolutionary Genetic Algorithm. Appl. Artif. Intell. 18(7), 581–601 (2004)

    Article  Google Scholar 

  19. Potter, M.A., De Jong, K.A.: Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srikasam, W., Chaiyaratana, N., Kuntanapreeda, S. (2006). Nonlinear System Stabilisation by an Evolutionary Neural Network. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_147

Download citation

  • DOI: https://doi.org/10.1007/11760023_147

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34437-7

  • Online ISBN: 978-3-540-34438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics