Automatic Image Segmentation by Positioning a Seed

  • Branislav Mičušík
  • Allan Hanbury
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3952)


We present a method that automatically partitions a single image into non-overlapping regions coherent in texture and colour. An assumption that each textured or coloured region can be represented by a small template, called the seed, is used. Positioning of the seed across the input image gives many possible sub-segmentations of the image having same texture and colour property as the pixels behind the seed. A probability map constructed during the sub-segmentations helps to assign each pixel to just one most probable region and produce the final pyramid representing various detailed segmentations at each level. Each sub-segmentation is obtained as the min-cut/max-flow in the graph built from the image and the seed. One segment may consist of several isolated parts. Compared to other methods our approach does not need a learning process or a priori information about the textures in the image. Performance of the method is evaluated on images from the Berkeley database.


Image Segmentation Seed Position Automatic Image Segmentation Combine Boundary Human Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. ICCV, pp. 416–425 (2001)Google Scholar
  2. 2.
    Tu, Z., Chen, X., Yuille, A., Zhu, S.: Image parsing: Unifying segmentation, detection, and recognition. IJCV, Marr Prize 63(2), 113–140 (2005)CrossRefGoogle Scholar
  3. 3.
    Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D., Jordan, M.I.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)MATHGoogle Scholar
  4. 4.
    Wolfson, S., Landy, M.: Examining edge- and region-based texture analysis mechanisms. Vision Research 38(3), 439–446 (1998)CrossRefGoogle Scholar
  5. 5.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22(8), 888–905 (2000)CrossRefGoogle Scholar
  6. 6.
    Stella, X.Y.: Segmentation using multiscale cues. In: Proc. CVPR, vol. I, pp. 247–254 (2004)Google Scholar
  7. 7.
    Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. IJCV 43(1), 7–27 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Fowlkes, C., Martin, D., Malik, J.: Learning affinity functions for image segmentation: Combining patch-based and gradient-based approaches. In: Proc. CVPR, vol. II, pp. 54–61 (2003)Google Scholar
  9. 9.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26(5), 530–549 (2004)CrossRefGoogle Scholar
  10. 10.
    Zabih, R., Kolmogorov, V.: Spatially coherent clustering using graph cuts. In: Proc. CVPR, vol. II, pp. 437–444 (2004)Google Scholar
  11. 11.
  12. 12.
  13. 13.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. IJCV 46(3), 223–247 (2002)CrossRefMATHGoogle Scholar
  14. 14.
    Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)MATHGoogle Scholar
  15. 15.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. ICCV, pp. 105–112 (2001)Google Scholar
  16. 16.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26(9), 1124–1137 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? PAMI 26(2), 147–159 (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Mičušík, B., Hanbury, A.: Supervised texture detection in images. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 441–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Estrada, F.J., Jepson, A.D.: Quantitative evaluation of a novel image segmentation algorithm. In: Proc. CVPR, vol. II, pp. 1132–1139 (2005)Google Scholar
  20. 20.
    Gevers, T., Smeulders, A.: Color-based object recognition. Pattern Recognition 32(3), 453–464 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Branislav Mičušík
    • 1
  • Allan Hanbury
    • 1
  1. 1.Pattern Recognition and Image Processing Group, Institute of Computer Aided AutomationVienna University of TechnologyViennaAustria

Personalised recommendations